DISTRIBUTED SOLUTION OF LAPLACIAN EIGENVALUE PROBLEMS

被引:1
作者
Hannukainen, Antti [1 ]
Malinen, Jarmo [1 ]
Ojalammi, Antti [1 ]
机构
[1] Aalto Univ, Dept Math & Syst Anal, Sch Sci, FI-00076 Espoo, Aalto, Finland
基金
芬兰科学院;
关键词
eigenvalue problem; domain decomposition; dimension reduction; subspace method; APPROXIMATION; COMPUTATION;
D O I
10.1137/20M1342653
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this article is to approximately compute the eigenvalues of the symmetric Dirichlet Laplacian within an interval (0, Lambda). A novel domain decomposition Ritz method, partition of unity condensed pole interpolation, is proposed. This method can be used in distributed computing environments where communication is expensive, e.g., in clusters running on cloud computing services or networked workstations. The Ritz space is obtained from local subspaces consistent with a decomposition of the domain into subdomains. These local subspaces are constructed independently of each other, using data only related to the corresponding subdomain. Relative eigenvalue error is analyzed. Numerical examples on a cluster of workstations validate the error analysis and the performance of the method.
引用
收藏
页码:76 / 103
页数:28
相关论文
共 26 条
[1]  
Adams R.A., 1975, Sobolev Spaces
[2]  
[Anonymous], 1992, Singularities in Boundary Value Problems
[3]  
[Anonymous], 2010, Partial Differential Equations
[4]   A comparison of eigensolvers for large-scale 3D modal analysis using AMG-preconditioned iterative methods [J].
Arbenz, P ;
Hetmaniuk, UL ;
Lehoucq, RB ;
Tuminaro, RS .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2005, 64 (02) :204-236
[5]   FINITE ELEMENT-GALERKIN APPROXIMATION OF THE EIGENVALUES AND EIGENVECTORS OF SELFADJOINT PROBLEMS [J].
BABUSKA, I ;
OSBORN, JE .
MATHEMATICS OF COMPUTATION, 1989, 52 (186) :275-297
[6]   OPTIMAL LOCAL APPROXIMATION SPACES FOR GENERALIZED FINITE ELEMENT METHODS WITH APPLICATION TO MULTISCALE PROBLEMS [J].
Babuska, Ivo ;
Lipton, Robert .
MULTISCALE MODELING & SIMULATION, 2011, 9 (01) :373-406
[7]   Computation of smallest eigenvalues using spectral schur complements [J].
Bekas, C ;
Saad, Y .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 27 (02) :458-481
[8]   An automated multilevel substructuring method for eigenspace computation in linear elastodynamics [J].
Bennighof, JK ;
Lehoucq, RB .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (06) :2084-2106
[9]  
Boffi D, 2010, ACTA NUMER, V19, P1, DOI 10.1017/S0962492910000012
[10]  
BOURQUIN F, 1992, RAIRO-MATH MODEL NUM, V26, P385