The existence of global weak solutions for a generalized Camassa-Holm equation

被引:2
作者
Tu, Xi [1 ]
Yin, Zhaoyang [2 ,3 ]
机构
[1] Foshan Univ, Dept Math, Foshan, Peoples R China
[2] Sun Yat Sen Univ, Dept Math, Guangzhou, Peoples R China
[3] Macau Univ Sci & Technol, Fac Informat Technol, Macau, Peoples R China
关键词
A generalized Camassa-Holm equation; global weak solution; the viscous approximation method; SHALLOW-WATER EQUATION; BLOW-UP PHENOMENA; CAUCHY-PROBLEM; WELL-POSEDNESS; INTEGRABLE EQUATION; SHOCK-WAVES; TRAJECTORIES; BREAKING;
D O I
10.1080/00036811.2020.1758313
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we mainly study the Cauchy problem of a generalized Camassa-Holm equation. We prove the existence of global weak solutions for this generalized Camassa-Holm equation by the viscous approximation method.
引用
收藏
页码:810 / 823
页数:14
相关论文
共 54 条
[1]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7_1
[2]   Global dissipative solutions of the Camassa-Holm equation [J].
Bressan, Alberto ;
Constantin, Adrian .
ANALYSIS AND APPLICATIONS, 2007, 5 (01) :1-27
[3]   Global conservative solutions of the Camassa-Holm equation [J].
Bressan, Alberto ;
Constantin, Adrian .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 183 (02) :215-239
[4]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[5]  
Camassa R., 1994, ADV APPL MECH, V31, P1, DOI [10.1016/S0065-2156(08)70254-0, DOI 10.1016/S0065-2156(08)70254-0]
[6]   On the well-posedness of the Degasperis-Procesi equation [J].
Coclite, GM ;
Karlsen, KH .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 233 (01) :60-91
[7]  
Constantin A, 2000, COMMUN PUR APPL MATH, V53, P603
[8]  
Constantin A, 1998, COMMUN PUR APPL MATH, V51, P475, DOI 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO
[9]  
2-5
[10]   Wave breaking for nonlinear nonlocal shallow water equations [J].
Constantin, A ;
Escher, J .
ACTA MATHEMATICA, 1998, 181 (02) :229-243