On the existence of a maximizer for the Strichartz inequality

被引:42
作者
Kunze, M [1 ]
机构
[1] Univ Essen Gesamthsch, FB Math 6, D-45117 Essen, Germany
关键词
Sharp Constant; Strichartz Inequality;
D O I
10.1007/s00220-003-0959-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that a maximizing function u* is an element of L-2 does exist for the Strichartz inequality lparallel toe(itpartial derivativex2) uparallel toL(t6(Lx6)) less than or equal to Sparallel touparallel to(L2), with S > 0 being the sharp constant.
引用
收藏
页码:137 / 162
页数:26
相关论文
共 14 条
[1]  
[Anonymous], 1996, VARIATIONAL METHODS, DOI DOI 10.1007/978-3-662-03212-1
[2]  
Bourgain J, 1998, INT MATH RES NOTICES, V1998, P253
[3]   EXTREMALS OF FUNCTIONALS WITH COMPETING SYMMETRIES [J].
CARLEN, EA ;
LOSS, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 88 (02) :437-456
[4]  
Cazenave T., 1996, INTRO NONLINEAR SCHR, V3rd
[5]   Bilinear estimates and applications to 2D NLS [J].
Colliander, JE ;
Delort, JM ;
Kenig, CE ;
Staffilani, G .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (08) :3307-3325
[6]  
Evans L.C., 1990, WEAK CONVERGENCE MET
[7]  
GRUNROCK A, 2001, SOME LOCAL WELLPOSED
[8]   Quadratic forms for the 1-D semilinear Schrodinger equation [J].
Kenig, CE ;
Ponce, G ;
Vega, L .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (08) :3323-3353
[9]  
KUNZE M, IN PRESS CALC VAR PA
[10]   SHARP CONSTANTS IN THE HARDY-LITTLEWOOD-SOBOLEV AND RELATED INEQUALITIES [J].
LIEB, EH .
ANNALS OF MATHEMATICS, 1983, 118 (02) :349-374