On the existence of a maximizer for the Strichartz inequality

被引:42
作者
Kunze, M [1 ]
机构
[1] Univ Essen Gesamthsch, FB Math 6, D-45117 Essen, Germany
关键词
Sharp Constant; Strichartz Inequality;
D O I
10.1007/s00220-003-0959-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that a maximizing function u* is an element of L-2 does exist for the Strichartz inequality lparallel toe(itpartial derivativex2) uparallel toL(t6(Lx6)) less than or equal to Sparallel touparallel to(L2), with S > 0 being the sharp constant.
引用
收藏
页码:137 / 162
页数:26
相关论文
共 14 条
  • [1] [Anonymous], 1996, VARIATIONAL METHODS, DOI DOI 10.1007/978-3-662-03212-1
  • [2] Bourgain J, 1998, INT MATH RES NOTICES, V1998, P253
  • [3] EXTREMALS OF FUNCTIONALS WITH COMPETING SYMMETRIES
    CARLEN, EA
    LOSS, M
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 88 (02) : 437 - 456
  • [4] Cazenave T., 1996, INTRO NONLINEAR SCHR, V3rd
  • [5] Bilinear estimates and applications to 2D NLS
    Colliander, JE
    Delort, JM
    Kenig, CE
    Staffilani, G
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (08) : 3307 - 3325
  • [6] Evans L.C., 1990, WEAK CONVERGENCE MET
  • [7] GRUNROCK A, 2001, SOME LOCAL WELLPOSED
  • [8] Quadratic forms for the 1-D semilinear Schrodinger equation
    Kenig, CE
    Ponce, G
    Vega, L
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (08) : 3323 - 3353
  • [9] KUNZE M, IN PRESS CALC VAR PA
  • [10] SHARP CONSTANTS IN THE HARDY-LITTLEWOOD-SOBOLEV AND RELATED INEQUALITIES
    LIEB, EH
    [J]. ANNALS OF MATHEMATICS, 1983, 118 (02) : 349 - 374