Optimal design of hydrometric station networks based on complex network analysis

被引:37
作者
Agarwal, Ankit [1 ,2 ,3 ,4 ,5 ]
Marwan, Norbert [3 ,4 ]
Rathinasamy, Maheswaran [6 ]
Ozturk, Ugur [2 ]
Kurths, Jurgen [2 ,3 ,4 ]
Merz, Bruno [1 ,2 ]
机构
[1] GFZ German Res Ctr Geosci, Sect 4 4 Hydrol, Potsdam 14473, Germany
[2] Univ Potsdam, Inst Environm Sci & Geog, Potsdam, Germany
[3] Potsdam Inst Climate Impact Res, Complex Sci Res Dept, Potsdam 14473, Germany
[4] Leibniz Assoc, Potsdam 14473, Germany
[5] Indian Inst Technol Roorkee, Dept Hydrol, Roorkee 247667, Uttar Pradesh, India
[6] MVGR Coll Engn, Dept Civil Engn, Vizianagaram 535005, India
关键词
IDENTIFYING INFLUENTIAL NODES; CLIMATE NETWORKS; RAINFALL; SYNCHRONIZATION; PRECIPITATION; STREAMFLOW; CLASSIFICATION; EVENTS;
D O I
10.5194/hess-24-2235-2020
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Hydrometric networks play a vital role in providing information for decision-making in water resource management. They should be set up optimally to provide as much information as possible that is as accurate as possible and, at the same time, be cost-effective. Although the design of hydrometric networks is a well-identified problem in hydrometeorology and has received considerable attention, there is still scope for further advancement. In this study, we use complex network analysis, defined as a collection of nodes interconnected by links, to propose a new measure that identifies critical nodes of station networks. The approach can support the design and redesign of hydrometric station networks. The science of complex networks is a relatively young field and has gained significant momentum over the last few years in different areas such as brain networks, social networks, technological networks, or climate networks. The identification of influential nodes in complex networks is an important field of research. We propose a new node-ranking measure - the weighted degree-betweenness (WDB) measure - to evaluate the importance of nodes in a network. It is compared to previously proposed measures used on synthetic sample networks and then applied to a real-world rain gauge network comprising 1229 stations across Germany to demonstrate its applicability. The proposed measure is evaluated using the decline rate of the network efficiency and the kriging error. The results suggest that WDB effectively quantifies the importance of rain gauges, although the benefits of the method need to be investigated in more detail.
引用
收藏
页码:2235 / 2251
页数:17
相关论文
共 54 条
[1]   Optimal design of rain gauge network in the Middle Yarra River catchment, Australia [J].
Adhikary, Sajal Kumar ;
Yilmaz, Abdullah Gokhan ;
Muttil, Nitin .
HYDROLOGICAL PROCESSES, 2015, 29 (11) :2582-2599
[2]   Quantifying the roles of single stations within homogeneous regions using complex network analysis [J].
Agarwal, A. ;
Marwan, N. ;
Maheswaran, R. ;
Merz, B. ;
Kurths, J. .
JOURNAL OF HYDROLOGY, 2018, 563 :802-810
[3]   Network-based identification and characterization of teleconnections on different scales [J].
Agarwal, Ankit ;
Caesar, Levke ;
Marwan, Norbert ;
Maheswaran, Rathinasamy ;
Merz, Bruno ;
Kurths, Juergen .
SCIENTIFIC REPORTS, 2019, 9 (1)
[4]   Wavelet-based multiscale similarity measure for complex networks [J].
Agarwal, Ankit ;
Maheswaran, Rathinasamy ;
Marwan, Norbert ;
Caesar, Levke ;
Kurths, Juergen .
EUROPEAN PHYSICAL JOURNAL B, 2018, 91 (11)
[5]   Multi-scale event synchronization analysis for unravelling climate processes: a wavelet-based approach [J].
Agarwal, Ankit ;
Marwan, Norbert ;
Rathinasamy, Maheswaran ;
Merz, Bruno ;
Kurths, Juergen .
NONLINEAR PROCESSES IN GEOPHYSICS, 2017, 24 (04) :599-611
[6]  
[Anonymous], USING ARCGISGEOSTATI
[7]  
[Anonymous], HYDROL EARTH SYST SC
[8]  
[Anonymous], J NONLINEAR SCI
[9]  
[Anonymous], 2019, Unraveling Spatio-temporal Climatic Patterns via Multi-scale Complex Networks Doctoral Dissertation
[10]  
[Anonymous], MARK RUR TOUR EXP