Stationary Pattern of a Reaction-Diffusion Mussel-Algae Model

被引:15
作者
Shen, Zuolin [1 ]
Wei, Junjie [1 ,2 ]
机构
[1] Harbin Inst Technol, Sch Math, Harbin 150001, Heilongjiang, Peoples R China
[2] Jimei Univ, Sch Sci, Xiamen 361021, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Mussel-algae model; State-dependent mortality; Pattern formation; Steady state; Global bifurcation; PREDATOR-PREY SYSTEM; SELF-ORGANIZATION; SPATIAL-PATTERNS; DYNAMICS;
D O I
10.1007/s11538-020-00727-w
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we consider a reaction-diffusion mussel-algae model with state-dependent mussel mortality. This mortality involves a positive feedback term resulting from the reduction of dislodgment and predation and a negative feedback term resulting from the intraspecific competition for mussel. We first study the global stability of the nonnegative uniform steady states and then focus on the existence and nonexistence of nonconstant positive steady states. The global bifurcation of constant positive steady state is also considered. Our results suggest that the regular patterning in mussel beds may be caused by the high mobility of algae or the low diffusion of mussels.
引用
收藏
页数:31
相关论文
共 41 条
[1]   A reaction-diffusion system modeling predator-prey with prey-taxis [J].
Ainseba, Bedr'Eddine ;
Bendahmane, Mostafa ;
Noussair, Ahmed .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (05) :2086-2105
[2]   AGGREGATION AND THE COMPETITIVE EXCLUSION-PRINCIPLE [J].
BRITTON, NF .
JOURNAL OF THEORETICAL BIOLOGY, 1989, 136 (01) :57-66
[3]   SPATIAL STRUCTURES AND PERIODIC TRAVELING WAVES IN AN INTEGRODIFFERENTIAL REACTION-DIFFUSION POPULATION-MODEL [J].
BRITTON, NF .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1990, 50 (06) :1663-1688
[4]   Pattern formation in three-dimensional reaction-diffusion systems [J].
Callahan, TK ;
Knobloch, E .
PHYSICA D, 1999, 132 (03) :339-362
[5]   Nonlinear stability analyses of Turing patterns for a mussel-algae model [J].
Cangelosi, Richard A. ;
Wollkind, David J. ;
Kealy-Dichone, Bonni J. ;
Chaiya, Inthira .
JOURNAL OF MATHEMATICAL BIOLOGY, 2015, 70 (06) :1249-1294
[6]   THE EFFECT OF DELAY ON A DIFFUSIVE PREDATOR-PREY SYSTEM WITH HOLLING TYPE-II PREDATOR FUNCTIONAL RESPONSE [J].
Chen, Shanshan ;
Shi, Junping ;
Wei, Junjie .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (01) :481-501
[7]   LARGE TIME BEHAVIOR OF SOLUTIONS OF SYSTEMS OF NON-LINEAR REACTION-DIFFUSION EQUATIONS [J].
CONWAY, E ;
HOFF, D ;
SMOLLER, J .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 35 (01) :1-16
[8]  
Henry D, 1981, LECT NOTES MATH
[9]   GLOBAL EXISTENCE AND BOUNDEDNESS IN REACTION-DIFFUSION SYSTEMS [J].
HOLLIS, SL ;
MARTIN, RH ;
PIERRE, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (03) :744-761
[10]   SWARMS OF PREDATORS EXHIBIT PREYTAXIS IF INDIVIDUAL PREDATORS USE AREA-RESTRICTED SEARCH [J].
KAREIVA, P ;
ODELL, G .
AMERICAN NATURALIST, 1987, 130 (02) :233-270