Poisson fibrations and fibered symplectic groupoids

被引:0
作者
Brahic, Olivier [1 ]
Fernandes, Rui Loja [1 ]
机构
[1] Univ Tecn Lisboa, Dept Matemat, Inst Super Tecn, P-1049001 Lisbon, Portugal
来源
POISSON GEOMETRY IN MATHEMATICS AND PHYSICS | 2008年 / 450卷
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that Poisson fibrations integrate to a special kind of symplectic fibrations, called fibered symplectic groupoids.
引用
收藏
页码:41 / 59
页数:19
相关论文
共 50 条
[31]   On Fibrations Between Internal Groupoids and Their Normalizations [J].
Jacqmin, P-A ;
Mantovani, S. ;
Metere, G. ;
Vitale, E. M. .
APPLIED CATEGORICAL STRUCTURES, 2018, 26 (05) :1015-1039
[32]   Groupoids, Fibrations, and Balanced Colorings of Networks [J].
Stewart, Ian .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024, 34 (07)
[33]   On Fibrations Between Internal Groupoids and Their Normalizations [J].
P.-A. Jacqmin ;
S. Mantovani ;
G. Metere ;
E. M. Vitale .
Applied Categorical Structures, 2018, 26 :1015-1039
[34]   FIBERED JOINS OF FIBRATIONS AND MAPS .2. [J].
RUTTER, JW .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1974, 8 (AUG) :453-459
[35]   Quantum Field Theories on Categories Fibered in Groupoids [J].
Marco Benini ;
Alexander Schenkel .
Communications in Mathematical Physics, 2017, 356 :19-64
[36]   Symplectic groupoids for cluster manifolds [J].
Li, Songhao ;
Rupel, Dylan .
JOURNAL OF GEOMETRY AND PHYSICS, 2020, 154
[37]   Quantum Field Theories on Categories Fibered in Groupoids [J].
Benini, Marco ;
Schenkel, Alexander .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 356 (01) :19-64
[38]   MOMENTS AND REDUCTION FOR SYMPLECTIC GROUPOIDS [J].
MIKAMI, K ;
WEINSTEIN, A .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1988, 24 (01) :121-140
[39]   EXTENSIONS OF SYMPLECTIC GROUPOIDS AND QUANTIZATION [J].
WEINSTEIN, A ;
XU, P .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1991, 417 :159-189
[40]   DOUBLE GROUPOIDS AND THE SYMPLECTIC CATEGORY [J].
Canez, Santiago .
JOURNAL OF GEOMETRIC MECHANICS, 2018, 10 (02) :217-250