On an Inductive Construction of Higher Spin Dirac Operators

被引:0
作者
De Schepper, H. [1 ]
Eelbode, D. [2 ]
Raeymaekers, T. [1 ]
机构
[1] Univ Ghent, Clifford Res Grp, Dept Math Anal, Galglaan 2, B-9000 Ghent, Belgium
[2] Univ Antwerp, Dept Math & Comp Sci, B-2020 Antwerp, Belgium
来源
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III | 2010年 / 1281卷
关键词
Higher spin Dirac operator; Dirac operator; Rarita Schwinger operator;
D O I
10.1063/1.3498058
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this contribution, we introduce higher spin Dirac operators, i.e. a specific class of differential operators in Clifford analysis of several vector variables, motivated by equations from theoretical physics. In particular, the higher spin Dirac operator in three vector variables will be explicitly constructed, starting from a description of the so-called twisted Rarita-Schwinger operator.
引用
收藏
页码:1500 / +
页数:2
相关论文
共 11 条
  • [1] ON THE HARMONIC AND MONOGENIC DECOMPOSITION OF POLYNOMIALS
    BRACKX, F
    CONSTALES, D
    RONVEAUX, A
    SERRAS, H
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1989, 8 (03) : 297 - 304
  • [2] Brackx F., POLYNOMIAL SOL UNPUB
  • [3] Brackx F., 1982, Clifford analysis
  • [4] Symmetric analogues of Rarita-Schwinger equations
    Bures, J
    Sommen, F
    Soucek, V
    Van Lancker, P
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2002, 21 (03) : 215 - 240
  • [5] Rarita-Schwinger type operators in Clifford analysis
    Bures, J
    Sommen, F
    Soucek, V
    Van Lancker, P
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 185 (02) : 425 - 455
  • [6] Constales D., 2001, Adv. Appl. Cliff. Algebra, V11, P271, DOI [10.1007/BF03042223, DOI 10.1007/BF03042223]
  • [7] Delanghe R., 1992, Clifford Analysis and Spinor Valued Functions
  • [8] Dirac P. A. M., 1928, P ROYAL SOC LONDON, V117
  • [9] A Toy Model for Higher Spin Dirac Operators
    Eelbode, D.
    Van de Voorde, L.
    [J]. PHYSICS OF ATOMIC NUCLEI, 2010, 73 (02) : 282 - 287
  • [10] On a theory of particles with half-integral spin
    Rarita, W
    Schwinger, J
    [J]. PHYSICAL REVIEW, 1941, 60 (01): : 61 - 61