On the buckling eigenvalue problem

被引:8
作者
Antunes, Pedro R. S. [1 ,2 ]
机构
[1] Univ Lusofona Humanidades & Tecnol, Dept Matemat, P-1749024 Lisbon, Portugal
[2] Univ Lisbon, Grp Math Phys, P-1649003 Lisbon, Portugal
关键词
BOUNDS; INEQUALITIES; MINIMIZATION; EIGENMODES; MEMBRANES; PROOF;
D O I
10.1088/1751-8113/44/21/215205
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove a density result which allows us to justify the application of the method of fundamental solutions to solve the buckling eigenvalue problem of a plate. We address an example of an analytic convex domain for which the first eigenfunction does change the sign and present a large-scale numerical study with polygons providing numerical evidence to some new conjectures.
引用
收藏
页数:13
相关论文
共 46 条
[11]   PROOF OF THE PAYNE-POLYA-WEINBERGER CONJECTURE [J].
ASHBAUGH, MS ;
BENGURIA, RD .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 25 (01) :19-29
[12]   On the isoperimetric inequality for the buckling of a clamped plate [J].
S. Ashbaugh ;
Dorin Bucur .
Zeitschrift für angewandte Mathematik und Physik ZAMP, 2003, 54 (5) :756-770
[13]  
Ashbaugh MS., 1997, Internat. Ser. Numer. Math., V123, P95, DOI [10.1007/978-3-0348-8942-1_9, DOI 10.1007/978-3-0348-8942-1_9]
[14]  
Ashbaugh MS., 1996, Ann. Scuola Norm. Sup. Pisa Cl. Sci., V23, P383
[15]  
BAUER L, 1972, MATH COMPUT, V26, P311, DOI 10.1090/S0025-5718-1972-0312751-9
[16]   POINTWISE BOUNDS IN FIRST BIHARMONIC BOUNDARY VALUE PROBLEM [J].
BRAMBLE, JH ;
PAYNE, LE .
JOURNAL OF MATHEMATICS AND PHYSICS, 1963, 42 (04) :278-&
[17]   Minimization of the third eigenvalue of the Dirichlet Laplacian [J].
Bucur, D ;
Henrot, A .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 456 (1996) :985-996
[18]  
CHASMAN LM, 2011, APPL ANAL IN PRESS
[19]  
CHASMAN LM, 2011, COMMUN MATH IN PRESS
[20]  
Chen G., 1992, BOUNDARY ELEMENT MET