On the buckling eigenvalue problem

被引:8
作者
Antunes, Pedro R. S. [1 ,2 ]
机构
[1] Univ Lusofona Humanidades & Tecnol, Dept Matemat, P-1749024 Lisbon, Portugal
[2] Univ Lisbon, Grp Math Phys, P-1649003 Lisbon, Portugal
关键词
BOUNDS; INEQUALITIES; MINIMIZATION; EIGENMODES; MEMBRANES; PROOF;
D O I
10.1088/1751-8113/44/21/215205
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove a density result which allows us to justify the application of the method of fundamental solutions to solve the buckling eigenvalue problem of a plate. We address an example of an analytic convex domain for which the first eigenfunction does change the sign and present a large-scale numerical study with polygons providing numerical evidence to some new conjectures.
引用
收藏
页数:13
相关论文
共 46 条
[1]   On the choice of source points in the method of fundamental solutions [J].
Alves, Carlos J. S. .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2009, 33 (12) :1348-1361
[2]   The method of fundamental solutions applied to the calculation of eigensolutions for 2D plates [J].
Alves, Carlos J. S. ;
Antunes, Pedro R. S. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 77 (02) :177-194
[3]  
Alves CJS, 2005, CMC-COMPUT MATER CON, V2, P251
[4]   A new method of fundamental solutions applied to nonhomogeneous elliptic problems [J].
Alves, CJS ;
Chen, CS .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2005, 23 (1-2) :125-142
[5]  
[Anonymous], 1953, Methods of mathematical physics
[6]  
[Anonymous], 2001, ELECT J DIFFERENT EQ
[7]   A numerical study of the spectral gap [J].
Antunes, Pedro ;
Freitas, Pedro .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (05)
[8]   New bounds for the principal Dirichlet eigenvalue of planar regions [J].
Antunes, Pedro ;
Freitas, Pedro .
EXPERIMENTAL MATHEMATICS, 2006, 15 (03) :333-342
[9]   On the range of the first two Dirichlet and Neumann eigenvalues of the Laplacian [J].
Antunes, Pedro R. S. ;
Henrot, Antoine .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 467 (2130) :1577-1603
[10]  
Ashbaugh MS, 2007, P SYMP PURE MATH, V76, P105