On strongly indefinite systems involving the fractional Laplacian

被引:14
作者
Choi, Woocheol [1 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
关键词
The Lane-Emden system; Strongly indefinite system; The fractional Laplacian; A priori estimates; NONLINEAR SCHRODINGER-EQUATIONS; POSITIVE SOLUTIONS; GROUND-STATES; CLASSIFICATION; REGULARITY; THEOREMS; SOBOLEV; WAVES;
D O I
10.1016/j.na.2015.03.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to study strongly indefinite systems involving the fractional Laplacian on bounded domains. Explicitly, we obtain existence and non-existence results, a priori estimates of Gidas-Spruck type, and a symmetry result. In addition, we give a different proof for the a priori estimate for nonlinear elliptic problems with the fractional Laplacian obtained in Cabre and Tan (2010) and Tan ( 2013). (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:127 / 153
页数:27
相关论文
共 35 条
[1]  
Adams R.A., 1975, Sobolev Spaces. Adams. Pure and applied mathematics
[2]   Bound and ground states of coupled nonlinear Schrodinger equations [J].
Ambrosetti, A ;
Colorado, E .
COMPTES RENDUS MATHEMATIQUE, 2006, 342 (07) :453-458
[3]   Standing waves of some coupled nonlinear Schrodinger equations [J].
Ambrosetti, Antonio ;
Colorado, Eduardo .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2007, 75 :67-82
[4]   On some critical problems for the fractional Laplacian operator [J].
Barrios, B. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (11) :6133-6162
[5]  
Bartsch T, 2006, J PARTIAL DIFFER EQ, V19, P200
[6]   CRITICAL-POINT THEOREMS FOR INDEFINITE FUNCTIONALS [J].
BENCI, V ;
RABINOWITZ, PH .
INVENTIONES MATHEMATICAE, 1979, 52 (03) :241-273
[7]   A concave-convex elliptic problem involving the fractional Laplacian [J].
Braendle, C. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) :39-71
[8]   Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates [J].
Cabre, Xavier ;
Sire, Yannick .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (01) :23-53
[9]   Positive solutions of nonlinear problems involving the square root of the Laplacian [J].
Cabre, Xavier ;
Tan, Jinggang .
ADVANCES IN MATHEMATICS, 2010, 224 (05) :2052-2093
[10]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260