Interfacial Engineering Regulates Deposition Kinetics of Zinc Metal Anodes

被引:14
作者
Jin, Hongrun [1 ]
Luo, Yongxin [1 ]
Qi, Bei [1 ]
Liu, Kaisi [1 ]
Wang, Quanji [1 ]
Yao, Bin [2 ]
Li, Hao [3 ]
Xiong, Wei [1 ]
Huang, Liang [1 ]
Zhou, Jun [1 ]
Guo, Zaiping [4 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[2] Univ Southern Calif, Epstein Dept Ind & Syst Engn, Los Angeles, CA 90089 USA
[3] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China
[4] Univ Adelaide, Sch Chem Engn & Adv Mat, Adelaide, SA 5005, Australia
基金
中国国家自然科学基金;
关键词
Zn-ion batteries; zinc metal anodes; cycling stability; Zn array; nucleation theory; DENDRITE-FREE ANODE; LONG-LIFE; ION; BATTERIES; MECHANISMS; STABILITY; CAPACITY;
D O I
10.1021/acsaem.1c02487
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rechargeable aqueous Zn-ion batteries (ZIBs) represent a promising energy storage technology due to their high theoretical capacity, intrinsic security, and low cost. However, the practical applications of ZIBs have been considerably hindered by the poor stability of Zn anodes, caused by the undesired dendrites and side reactions. Herein, we present an interfacial engineering strategy to address these issues via in situ tuning the surface texture through a laser-micromachining method. The as-prepared Zn anode shows a periodic grid array architecture with a rough surface. This unique structure enhances the interfacial wettability and optimizes the mass transfer kinetics of Zn plating/stripping. In addition, a large number of Zn nanoparticles could serve as nucleation sites to regulate uniform Zn deposition. As a result, the engineered Zn array anode enables a remarkably ultralong cycling life of 2500 h at 10 mA cm(-2) (areal capacity of 2 mA h cm(-2)) with a benchmark cumulative capacity of 12.5 A h cm(-2). The hybrid supercapacitor based on the Zn array anode and activated carbon (AC) cathode further demonstrates its superior stability, showing no capacity loss after 20 000 cycles. This interfacial engineering strategy with mass production possibility can also be applied to other metal electrodes, holding a great promise for durable energy storage systems.
引用
收藏
页码:11743 / 11751
页数:9
相关论文
共 50 条
[31]   Realizing high-power and high-capacity zinc/sodium metal anodes through interfacial chemistry regulation [J].
Hou, Zhen ;
Gao, Yao ;
Tan, Hong ;
Zhang, Biao .
NATURE COMMUNICATIONS, 2021, 12 (01)
[32]   Guiding Sodium Deposition through a Sodiophobic-Sodiophilic Gradient Interfacial Layer for Highly Stable Sodium Metal Anodes [J].
Sun, Zhaowei ;
Jin, Hongchang ;
Ye, Yadong ;
Xie, Huanyu ;
Jia, Wenshan ;
Jin, Song ;
Ji, Hengxing .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (03) :2724-2731
[33]   Interfacial Design of Dendrite-Free Zinc Anodes for Aqueous Zinc-Ion Batteries [J].
Zhang, Qi ;
Luan, Jingyi ;
Tang, Yougen ;
Ji, Xiaobo ;
Wang, Haiyan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (32) :13180-13191
[34]   An Artificial Interphase Engineering Simultaneously Suppressing Hydrogen Evolution Reaction and Controlling Zinc Dendrite Growth to Achieve Stable Zinc Metal Anodes [J].
Liang, Kang ;
Huang, Shiping ;
Zhao, Hongshun ;
Liu, Wenjun ;
Huang, Xiaobing ;
Chen, Wenkai ;
Ren, Yurong ;
Ma, Jianmin .
ADVANCED MATERIALS INTERFACES, 2022, 9 (32)
[35]   Steric hindrance and orientation polarization by a zwitterionic additive to stabilize zinc metal anodes [J].
Wang, Lu ;
Yu, Huaming ;
Chen, Dongping ;
Jin, Youliang ;
Jiang, Liangliang ;
He, Hanwei ;
Zhou, Gang ;
Xie, Zeqiang ;
Chen, Yuejiao .
CARBON NEUTRALIZATION, 2024, 3 (06) :996-1008
[36]   Molecular Layer Deposition of Crosslinked Polymeric Lithicone for Superior Lithium Metal Anodes [J].
Meng, Xiangbo ;
Lau, Kah Chun ;
Zhou, Hua ;
Ghosh, Sujan Kumar ;
Benamara, Mourad ;
Zou, Min .
ENERGY MATERIAL ADVANCES, 2021, 2021
[37]   Atomic layer deposition of yttrium oxide as a protective coating for lithium metal anodes [J].
Zhao, Bo ;
Li, Jin ;
Guillaume, Maxime ;
Cremers, Veronique ;
Henderick, Lowie ;
Dendooven, Jolien ;
Detavernier, Christophe .
DALTON TRANSACTIONS, 2023, 52 (21) :7302-7310
[38]   Engineering interfaces of zinc metal anode for stable batteries [J].
Zhang, Junlong ;
Shi, Mengyu ;
Gao, Huawei ;
Ren, Xiaoxian ;
Cao, Jinchao ;
Li, Guojie ;
Wang, Aoxuan ;
Liu, Chuntai .
CHEMICAL ENGINEERING JOURNAL, 2024, 491
[39]   Boosted Li+ transference number enabled via interfacial engineering for dendrite-free lithium metal anodes [J].
Zeng, Ting ;
Yan, Yu ;
He, Miao ;
Zheng, Ruixin ;
Du, Dayue ;
Ren, Longfei ;
Zhou, Bo ;
Shu, Chaozhu .
CHEMICAL COMMUNICATIONS, 2021, 57 (94) :12687-12690
[40]   Self-limiting lithium deposition enabled by synergistic surface chemical and structural engineering of Li metal anodes [J].
Tan, Peiran ;
Wang, Yueming ;
Sun, Xiangru ;
Zhou, Ying ;
Dong, Hongyang ;
Han, Yan ;
Li, Dejun .
JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 996