Novel piperazinium-mediated crosslinked polyimide membranes for high performance CO2 separation

被引:32
|
作者
Kammakakam, Irshad [1 ]
Yoon, Hee Wook [2 ]
Nam, SangYong [3 ]
Park, Ho Bum [2 ]
Kim, Tae-Hyun [1 ]
机构
[1] Incheon Natl Univ, Dept Chem, Organ Mat Synth Lab, Inchon 406772, South Korea
[2] Hanyang Univ, WCU Dept Energy Engn, Seoul 133791, South Korea
[3] Gyeongsang Natl Univ, Engn Res Inst, Dept Mat Engn & Convergence Technol, Jinju 660701, South Korea
关键词
CO2; separation; Poly(ionic liquid); Crosslinked polyimide; Plasticization; Homogeneous and heterogeneous crosslinking; TEMPERATURE IONIC LIQUIDS; ANION-EXCHANGE MEMBRANES; GAS-SEPARATION; TRANSPORT-PROPERTIES; LINKING; PLASTICIZATION; PERMEABILITY; SUPPRESSION; POLYMERS; CAPTURE;
D O I
10.1016/j.memsci.2015.03.053
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Crosslinked polyimides with a pendant piperazinium bromide acting as both the crosslinker and the CO2-philic functional group have been developed. These ionic-group-mediated crosslinked polyimide membranes showed excellent thermal, mechanical and chemical stabilities, as well as high tolerance to plasticization. Unlike other typical crosslinked polymers, the pendant piperazinium-mediaLed cross linked polyimicle membranes displayed high CO2 permeability of 475.5 Barrer, together with high CO2/CH4 (34.5) and CO2/N-2 (18) perrnselecLiviLies. We also demonstrate that the CO2 separation performances of these membranes can be tuned by changing the crosslinking method. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:90 / 98
页数:9
相关论文
共 50 条
  • [21] Plasticization-resistant hollow fiber membranes for CO2/CH4 separation based on a thermally crosslinkable polyimide
    Chen, Chien-Chiang
    Qiu, Wulin
    Miller, Stephen J.
    Koros, William J.
    JOURNAL OF MEMBRANE SCIENCE, 2011, 382 (1-2) : 212 - 221
  • [22] Highly Selective Benzimidazole-Based Polyimide/Ionic Polyimide Membranes for Pure- and Mixed-Gas CO2/CH4 Separation
    Xie, Wei
    Jiao, Yang
    Cai, Zhili
    Liu, Hongyan
    Gong, Lili
    Lai, Wei
    Shan, Linglong
    Luo, Shuangjiang
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 282
  • [23] Functionalization of silica membranes for CO2 separation
    Karimi, Somayeh
    Mortazavi, Yadollah
    Khodadadi, Abbas Ali
    Holmgren, Allan
    Korelskiy, Danil
    Hedlund, Jonas
    SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 235 (235)
  • [24] Cyclic tertiary amino group containing fixed carrier membranes for CO2 separation
    He, Wenjuan
    Wang, Zhi
    Li, Wen
    Li, Shichun
    Bai, Zhiheng
    Wang, Jixiao
    Wang, Shichang
    JOURNAL OF MEMBRANE SCIENCE, 2015, 476 : 171 - 181
  • [25] High performance composite CO2 separation membranes
    Patricio, S. G.
    Papaioannou, E.
    Zhang, G.
    Metcalfe, I. S.
    Marques, F. M. B.
    JOURNAL OF MEMBRANE SCIENCE, 2014, 471 : 211 - 218
  • [26] High-performance SPEEK/amino acid salt membranes for CO2 separation
    Qin, Yun
    Lv, Jianfei
    Fu, Xin
    Guo, Ruili
    Li, Xueqin
    Zhang, Jianshu
    Wei, Zhong
    RSC ADVANCES, 2016, 6 (03): : 2252 - 2258
  • [27] Plasticization behavior of crown-ether containing polyimide membranes for the separation of CO2
    Houben, Menno
    Borneman, Zandrie
    Nijmeijer, Kitty
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 255
  • [28] Approaches to Suppress CO2-Induced Plasticization of Polyimide Membranes in Gas Separation Applications
    Zhang, Moli
    Deng, Liming
    Xiang, Dongxiao
    Cao, Bing
    Hosseini, Seyed Saeid
    Li, Pei
    PROCESSES, 2019, 7 (01):
  • [29] Effect of Humidity on CO2/N2 and CO2/CH4 Separation Using Novel Robust Mixed Matrix Composite Hollow Fiber Membranes: Experimental and Model Evaluation
    Casado-Coterillo, Clara
    Fernandez-Barquin, Ana
    Irabien, Angel
    MEMBRANES, 2020, 10 (01)
  • [30] CO2 separation by mixed matrix membranes incorporated with carbon nanotubes: a review of morphological, mechanical, thermal and transport properties
    Flores, Marcelo Costa
    Arcanjo Goncalves, Bruno Jose
    de Souza Figueiredo, Katia Cecilia
    BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2021, 38 (04) : 777 - 810