Optimal Berry-Esseen bound for an estimator of parameter in the Ornstein-Uhlenbeck process

被引:10
作者
Kim, Yoon Tae [1 ]
Park, Hyun Suk [1 ]
机构
[1] Hallym Univ, Dept Stat, Chunchon 200702, Gangwon Do, South Korea
基金
新加坡国家研究基金会;
关键词
Malliavin calculus; Ornstein-Uhlenbeck process; Berry-Esseen bound; Maximum likelihood estimator; Multiple stochastic integral; Edgeworth expansion;
D O I
10.1016/j.jkss.2017.01.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is concerned with the study of the rate of central limit theorem for the maximum likelihood estimator (theta) over bar (T), of the unknown parameter theta > 0, based on the observation X = {X-t, 0 <= t <= T}, occurring in the drift coefficient of an Ornstein-Uhlenbeck process dX(t) = -theta X(t)dt + dW(t), X-0 = 0 for 0 <= t <= T, where {W-t, t >= 0} is a standard Brownian motion. The tool we use is an Edgeworth expansion with an explicitly expressed remainder. We prove that upper and lower bounds, obtained by controlling the remainder term, give an optimal rate 1/root T. in Kolmogorov distance for normal approximation of (theta) over bar (T). (C) 2017 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:413 / 425
页数:13
相关论文
共 16 条
[1]  
Basawa I. V., 1980, Statistical inference for stochastic processes
[2]  
Bishwal J., 2008, PARAMETER ESTIMATION
[3]  
BISHWAL JPN, 1995, CALCUTTA STAT ASS B, V45, P245
[4]  
Bishwal JPN., 2000, SANKHYA, V62, P1
[5]  
Bose A., 1985, 485 CALC STAT MATH U
[6]  
Chen LHY, 2011, PROBAB APPL SER, P1, DOI 10.1007/978-3-642-15007-4
[7]   CENTRAL LIMIT-THEOREMS FOR QUADRATIC-FORMS IN RANDOM-VARIABLES HAVING LONG-RANGE DEPENDENCE [J].
FOX, R ;
TAQQU, MS .
PROBABILITY THEORY AND RELATED FIELDS, 1987, 74 (02) :213-240
[8]  
Kim Y. T., 2016, EDGEWORTH EXPANSION
[9]   ACCURACY OF NORMAL APPROXIMATION FOR MINIMUM CONTRAST ESTIMATES [J].
MICHEL, R ;
PFANZAGL, J .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1971, 18 (01) :73-&
[10]  
MISHRA MN, 1985, SANKHYA SER A, V47, P392