Solving diffusion equation using wavelet method

被引:18
|
作者
Chen, Xuefeng [2 ]
Xiang, Jiawei [1 ]
机构
[1] Guilin Univ Elect Technol, Sch Mech & Elect Engn, Guilin 541004, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Diffusion equation; Wavelets; Hermite cubic splines; Lifting scheme; Wavelet numerical method; HERMITE CUBIC-SPLINES; NUMERICAL-SOLUTION; INTERVAL; ELEMENT; ORDER; BASES;
D O I
10.1016/j.amc.2011.01.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A wavelet-based numerical method based on wavelets of Hermite cubic splines is presented for computing singularly perturbed convection-dominated diffusion equation. The advantages of the method are explained. To improve the accuracy of singular areas, wavelets are configured hierarchically for solving algebraic equations. Numerical examples show that the proposed method has good efficiency and precision. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:6426 / 6432
页数:7
相关论文
共 50 条
  • [21] Solving Fractional Two-Dimensional Nonlinear Partial Volterra Integral Equation by Using Bernoulli Wavelet
    Khajehnasiri, A. A.
    Ezzati, R.
    Kermani, M. Afshar
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2021, 45 (03): : 983 - 995
  • [22] OPERATIONAL MATRIX METHOD FOR SOLVING NONLINEAR SPACE-TIME FRACTIONAL ORDER REACTION-DIFFUSION EQUATION BASED ON GENOCCHI POLYNOMIAL
    Kumar, Sachin
    Pandey, Prashant
    Das, Subir
    SPECIAL TOPICS & REVIEWS IN POROUS MEDIA-AN INTERNATIONAL JOURNAL, 2020, 11 (01) : 33 - 47
  • [23] Wavelet method for a class of fractional convection-diffusion equation with variable coefficients
    Chen, Yiming
    Wu, Yongbing
    Cui, Yuhuan
    Wang, Zhuangzhuang
    Jin, Dongmei
    JOURNAL OF COMPUTATIONAL SCIENCE, 2010, 1 (03) : 146 - 149
  • [24] Solving Diffusion Equation Using a New Multiquadric Quasi-interpolation
    Cao, Junying
    Wang, Ziqiang
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND SERVICE SYSTEM (CSSS), 2014, 109 : 324 - 327
  • [25] A Wavelet Based Approach for Solving Poisson's Equation
    Quraishi, S. M.
    Sandeep, K.
    2009 INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN ELECTRONIC AND PHOTONIC DEVICES AND SYSTEMS (ELECTRO-2009), 2009, : 432 - 435
  • [26] A UNIFIED FINITE DIFFERENCE CHEBYSHEV WAVELET METHOD FOR NUMERICALLY SOLVING TIME FRACTIONAL BURGERS' EQUATION
    Oruc, Omer
    Esen, Alaattin
    Bulut, Fatih
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2019, 12 (03): : 533 - 542
  • [27] CAS wavelet method for solving the fractional integro-differential equation with a weakly singular kernel
    Yi, Mingxu
    Huang, Jun
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (08) : 1715 - 1728
  • [28] Wavelet Collocation Method for Solving Multiorder Fractional Differential Equations
    Heydari, M. H.
    Hooshmandasl, M. R.
    Ghaini, F. M. Maalek
    Mohammadi, F.
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [29] An Approximation Method for Solving Burgers' Equation Using Legendre Wavelets
    Venkatesh, S. G.
    Ayyaswamy, S. K.
    Balachandar, S. Raja
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2017, 87 (02) : 257 - 266
  • [30] Using Newton basis functions for solving diffusion equation with nonlocal boundary condition
    Fadaei Y.
    Moghadam M.M.
    SeMA Journal, 2018, 75 (1) : 145 - 155