Multisolitons and stability of two hump solitons of upper cutoff mode in discrete electrical transmission line

被引:18
作者
Motcheyo, Alain Bertrand Togueu [1 ]
Tchawoua, Clement [1 ]
Siewe, Martin Siewe [1 ]
Tchameu, Joel Durel Tchinang [1 ]
机构
[1] Univ Yaounde 1, Fac Sci, Dept Phys, Lab Mecan, Yaounde, Cameroon
关键词
Transmission line; Localized modes; Nonlinear dynamics solitons; Multisolitons; NONLINEAR SCHRODINGER-EQUATION; INTRINSIC LOCALIZED MODES; ANHARMONIC LATTICES; HOMOCLINIC ORBITS; BREATHERS; MULTIBREATHERS; SYSTEMS;
D O I
10.1016/j.physleta.2011.01.018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that a discrete electrical transmission line, such as a Band-pass filter is modeled by the Salerno equation at the upper cutoff mode. Special interest is paid to the investigation of stationary localized solutions supported by this equation for some given experimental parameters. Applying a map approach, the profiles of single and two bright solitons are obtained. Linear stability and direct numerical simulations are performed and the results show that a single bright soliton is stable while two bright ones are unstable and lead to a single bright soliton. Finally, we show that the lifespan of two hump solitons increases depending on the length thrust range of the kicked initial condition. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1104 / 1109
页数:6
相关论文
共 28 条
[1]   On classification of intrinsic localized modes for the discrete nonlinear Schrodinger equation [J].
Alfimov, GL ;
Brazhnyi, VA ;
Konotop, VV .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 194 (1-2) :127-150
[2]   Exploiting discreteness for switching in arrays of nonlinear waveguides [J].
Bang, O ;
Miller, PD .
PHYSICA SCRIPTA, 1996, T67 :26-29
[3]   Multibreathers and homoclinic orbits in 1-dimensional nonlinear lattices [J].
Bountis, T ;
Capel, HW ;
Kollmann, M ;
Ross, JC ;
Bergamin, JM ;
van der Weele, JP .
PHYSICS LETTERS A, 2000, 268 (1-2) :50-60
[4]   Multistable solitons in the cubic-quintic discrete nonlinear Schrodinger equation [J].
Carretero-Gonzalez, R. ;
Talley, J. D. ;
Chong, C. ;
Malomed, B. A. .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 216 (01) :77-89
[5]   Localized breathing oscillations of Bose-Einstein condensates in periodic traps -: art. no. 033610 [J].
Carretero-González, R ;
Promislow, K .
PHYSICAL REVIEW A, 2002, 66 (03) :336101-336106
[6]   Multistable solitons in higher-dimensional cubic-quintic nonlinear Schrodinger lattices [J].
Chong, C. ;
Carretero-Gonzalez, R. ;
Malomed, B. A. ;
Kevrekidis, P. G. .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (02) :126-136
[7]   Spatially localized voltage oscillations in an electrical lattice [J].
Essimbi, BZ ;
Barashenkov, IV .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2002, 35 (12) :1438-1441
[8]   CONDITIONS ON THE EXISTENCE OF LOCALIZED EXCITATIONS IN NONLINEAR DISCRETE-SYSTEMS [J].
FLACH, S .
PHYSICAL REVIEW E, 1994, 50 (04) :3134-3142
[9]   Discrete breathers - Advances in theory and applications [J].
Flach, Sergej ;
Gorbach, Andrey V. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 467 (1-3) :1-116
[10]   SPATIAL PROPERTIES OF INTEGRABLE AND NONINTEGRABLE DISCRETE NONLINEAR SCHRODINGER-EQUATIONS [J].
HENNIG, D ;
SUN, NG ;
GABRIEL, H ;
TSIRONIS, GP .
PHYSICAL REVIEW E, 1995, 52 (01) :255-269