Cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional Lagrangian hydrodynamics

被引:44
作者
Vilar, Francois [1 ]
Maire, Pierre-Henri [1 ]
Abgrall, Remi [2 ,3 ]
机构
[1] CEA, CESTA, F-33114 Le Barp, France
[2] Univ Bordeaux, Team Bacchus, Inst Math Bordeaux, F-33405 Talence, France
[3] INRIA, F-33405 Talence, France
关键词
DG schemes; Lagrangian hydrodynamics; Hyperbolic conservation laws; Slope limiting; FINITE-ELEMENT-METHOD;
D O I
10.1016/j.compfluid.2010.07.018
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and also for the one-dimensional Lagrangian hydrodynamics up to third-order. We also demonstrate that a proper choice of the numerical fluxes allows to enforce stability properties of our discretizations. (C) 2010 Elsevier Ltd. All rights reserved,
引用
收藏
页码:498 / 504
页数:7
相关论文
共 11 条
[1]   PARALLEL, ADAPTIVE FINITE-ELEMENT METHODS FOR CONSERVATION-LAWS [J].
BISWAS, R ;
DEVINE, KD ;
FLAHERTY, JE .
APPLIED NUMERICAL MATHEMATICS, 1994, 14 (1-3) :255-283
[2]   TVB RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .2. GENERAL FRAMEWORK [J].
COCKBURN, B ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1989, 52 (186) :411-435
[3]   TVB RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .3. ONE-DIMENSIONAL SYSTEMS [J].
COCKBURN, B ;
LIN, SY ;
SHU, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 84 (01) :90-113
[4]  
COCKBURN B., 2003, DISCONTINUOUS GALERK
[5]   Solutions of multi-dimensional hyperbolic systems of conservation laws by square entropy condition satisfying discontinuous Galerkin method [J].
Hou, Songming ;
Liu, Xu-Dong .
JOURNAL OF SCIENTIFIC COMPUTING, 2007, 31 (1-2) :127-151
[6]  
JIANG GS, 1994, MATH COMPUT, V62, P531, DOI 10.1090/S0025-5718-1994-1223232-7
[7]   Adaptive semidiscrete central-upwind schemes for nonconvex hyperbolic conservation laws [J].
Kurganov, Alexander ;
Petrova, Guergana ;
Popov, Bojan .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (06) :2381-2401
[8]   A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin methods [J].
Kuzmin, Dmitri .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (12) :3077-3085
[9]   A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes [J].
Maire, Pierre-Henri .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (07) :2391-2425
[10]  
Shu C., 2009, ADV COURSES MATH CRM