Undecidability in the homomorphic quasiorder of finite labelled forests

被引:12
作者
Kudinov, Oleg V. [1 ]
Selivanov, Victor L. [2 ,3 ]
机构
[1] Russian Acad Sci, Siberian Div, SL Sobolev Inst Math, Novosibirsk, Russia
[2] Univ Wurzburg, D-97070 Wurzburg, Germany
[3] Russian Acad Sci, Siberian Div, AP Ershov Inst Informat Syst, Moscow 117901, Russia
关键词
labelled tree; forest; homomorphic quasiorder; undecidability; theory;
D O I
10.1093/logcom/exm038
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that the homomorphic quasiorder of finite k-labelled forests has a hereditary undecidable first-order theory for k >= 3, in contrast to the known decidability result for k = 2. We establish also hereditary undecidability (again for every k >= 3) of first-order theories of two other relevant structures: the homomorphic quasiorder of finite k-labelled trees, and of finite k-labelled trees with a fixed label of the root element. Finally, all three first-order theories are shown to be computably isomorphic to the first-order arithmetic.
引用
收藏
页码:1135 / 1151
页数:17
相关论文
共 15 条
[1]  
Davey B.A., 1994, INTRO LATTICES ORDER
[2]  
ERSHOV YL, 1965, DOKL AKAD NAUK SSSR+, V161, P27
[3]  
Ershov Yu. L., 1965, USP MAT NAUK, V20, P37
[4]  
HERTLING P, 1993, TOPOLOGISCHE KOMPLEX
[5]  
Kosub S, 2000, LECT NOTES COMPUT SC, V1770, P157
[6]  
KOSUB S, 2000, LECT NOTES COMPUTER, V1893, P467
[7]  
Kruskal Joseph, 1972, J COMBINATORIAL TH A, V13, P297, DOI DOI 10.1016/0097-3165(72)90063-5
[8]   Undecidability in the homomorphic quasiorder of finite labeled forests [J].
Kudinov, Oleg V. ;
Selivanov, Victor L. .
LOGICAL APPROACHES TO COMPUTATIONAL BARRIERS, PROCEEDINGS, 2006, 3988 :289-+
[9]  
KUSKE D, 2006, THEORETICAL INFORM A, V40, P53
[10]  
ROGERS H, 1967, THOERY RECURSIVE FUN