Lactate is a preferential oxidative energy substrate over glucose for neurons in culture

被引:251
作者
Bouzier-Sore, AK
Voisin, P
Canioni, P
Magistretti, TJ
Pellerin, T
机构
[1] Univ Bordeaux, CNRS, UMR 5536, Ctr Resonance Magnet Syst Biol, Bordeaux, France
[2] Univ Lausanne, Inst Physiol, Lausanne, Switzerland
关键词
energy metabolism; brain; NMR spectroscopy; TCA cycle; monocarboxylate; glutamate;
D O I
10.1097/01.WCB.0000091761.61714.25
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The authors investigated concomitant lactate and glucose metabolism in primary neuronal cultures using C-13 and H-1-NMR spectroscopy. Neurons were incubated in a medium containing either [1-C-13] glucose and different unlabeled lactate concentrations, or unlabeled glucose and different [3-C-13] lactate concentrations. Overall, C-13-NMR spectra of cellular extracts showed that more C-13 was incorporated into glutamate when lactate was the enriched substrate. Glutamate C-13-enrichment was also found to be much higher in lactate-labeled than in glucose-labeled conditions. When glucose and lactate concentrations were identical (5.5 mmol/L), relative contributions of glucose and lactate to neuronal oxidative metabolism amounted to 21% and 79%, respectively. Results clearly indicate that when neurons are in the presence of both glucose and lactate, they preferentially use lactate as their main oxidative substrate.
引用
收藏
页码:1298 / 1306
页数:9
相关论文
共 56 条
[1]   Striking differences in glucose and lactate levels between brain extracellular fluid and plasma in conscious human subjects: Effects of hyperglycemia and hypoglycemia [J].
Abi-Saab, WM ;
Maggs, DG ;
Jones, T ;
Jacob, R ;
Srihari, V ;
Thompson, J ;
Kerr, D ;
Leone, P ;
Krystal, JH ;
Spencer, DD ;
During, MJ ;
Sherwin, RS .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2002, 22 (03) :271-279
[2]   The entry of [1-C-13]glucose into biochemical pathways reveals a complex compartmentation and metabolite trafficking between glia and neurons: a study by C-13-NMR spectroscopy [J].
Aureli, T ;
DiCocco, ME ;
Calvani, M ;
Conti, F .
BRAIN RESEARCH, 1997, 765 (02) :218-227
[3]   Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain [J].
Bittar, PG ;
Charnay, Y ;
Pellerin, L ;
Bouras, C ;
Magistretti, PJ .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1996, 16 (06) :1079-1089
[4]   Interactions among glucose, lactate and adenosine regulate energy substrate utilization in hippocampal cultures [J].
Bliss, TM ;
Sapolsky, RM .
BRAIN RESEARCH, 2001, 899 (1-2) :134-141
[5]   Compartmentation of lactate and glucose metabolism in C6 glioma cells -: A 13C and 1H NMR study [J].
Bouzier, AK ;
Goodwin, R ;
de Gannes, FMP ;
Valeins, H ;
Voisin, P ;
Canioni, P ;
Merle, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (42) :27162-27169
[6]   The metabolism of [3-13C]lactate in the rat brain is specific of a pyruvate carboxylase-deprived compartment [J].
Bouzier, AK ;
Thiaudiere, E ;
Biran, M ;
Rouland, R ;
Canioni, P ;
Merle, M .
JOURNAL OF NEUROCHEMISTRY, 2000, 75 (02) :480-486
[7]   Feeding active neurons: (re)emergence of a nursing role for astrocytes [J].
Bouzier-Sore, AK ;
Merle, M ;
Magistretti, PJ ;
Pellerin, L .
JOURNAL OF PHYSIOLOGY-PARIS, 2002, 96 (3-4) :273-282
[8]   Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes [J].
Bröer, S ;
Bröer, A ;
Schneider, HP ;
Stegen, C ;
Halestrap, AP ;
Deitmer, JW .
BIOCHEMICAL JOURNAL, 1999, 341 :529-535
[9]   Neuroprotective role of monocarboxylate transport during glucose deprivation in slice cultures of rat hippocampus [J].
Cater, HL ;
Benham, CD ;
Sundstrom, LE .
JOURNAL OF PHYSIOLOGY-LONDON, 2001, 531 (02) :459-466
[10]  
Clarke Donald D., 1994, P645