Multiplicity solutions to non-local problems with general potentials and combined nonlinearities

被引:0
作者
Xue, Ye [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
关键词
Nonlocal problem; Variational method; Multiplicity solutions; NONTRIVIAL SOLUTION; EXISTENCE; EQUATIONS; LINKING;
D O I
10.1016/j.aml.2021.107583
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence and multiplicity of nontrivial solutions for equations driven by a nonlocal integrodifferential operator LK with homogeneous Dirichlet boundary conditions. Taking general potentials and combined nonlinearities into consideration, at least two weak solutions are obtained by abstract critical point results. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 12 条
[1]  
Han Z. Q., 2020, Partial Differ. Equ. Appl., V1, P1, DOI [10.1007/s42985-020-00034-y, DOI 10.1007/S42985-020-00034-Y]
[2]   Multiplicity of solutions for a class of elliptic boundary value problems [J].
He, Xiaoming ;
Zou, Wenming .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) :2606-2613
[3]   Existence of a nontrivial solution for a class of superquadratic elliptic problems [J].
Jiang, Qin ;
Tang, Chun-Lei .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (02) :523-529
[4]  
Ke XF, 2018, ELECTRON J DIFFER EQ
[5]   Existence and multiplicity of solutions for Kirchhoff-Schrodinger type equations involving p(x)-Laplacian on the entire space RN [J].
Lee, Jongrak ;
Kim, Jae-Myoung ;
Kim, Yun-Ho .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 45 :620-649
[6]   THE EXISTENCE OF A NONTRIVIAL SOLUTION TO A NONLINEAR ELLIPTIC PROBLEM OF LINKING TYPE WITHOUT THE AMBROSETTI-RABINOWITZ CONDITION [J].
Li, Gongbao ;
Wang, Chunhua .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2011, 36 (02) :461-480
[7]   APPLICATIONS OF LOCAL LINKING TO CRITICAL-POINT THEORY [J].
LI, SJ ;
WILLEM, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 189 (01) :6-32
[8]   Mountain Pass solutions for non-local elliptic operators [J].
Servadei, Raffaella ;
Valdinoci, Enrico .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (02) :887-898
[9]  
Willem M., 1996, Minimax Theorems
[10]   Multiple solutions for a class of semilinear elliptic equations with general potentials [J].
Zhang, Qingye ;
Liu, Chungen .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (14) :5473-5481