Serial hole transfer layers for a BiVO4 photoanode with enhanced photoelectrochemical water splitting

被引:45
|
作者
Li, Linsen [1 ]
Li, Jinhua [1 ]
Bai, Jing [1 ]
Zeng, Qingyi [1 ]
Xia, Ligang [1 ]
Zhang, Yan [1 ]
Chen, Shuai [1 ]
Xu, Qunjie [2 ,3 ]
Zhou, Baoxue [1 ,3 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Environm Sci & Engn, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
[2] Shanghai Univ Elect Power, Coll Environm & Chem Engn, 2588 Changyang Rd, Shanghai 200090, Peoples R China
[3] Shanghai Inst Pollut Control & Ecol Secur, Shanghai 200092, Peoples R China
[4] Minist Educ, Key Lab Thin Film & Microfabricat Technol, Shanghai 200240, Peoples R China
关键词
ELECTROCHEMICAL SYNTHESIS; COBALT-PHOSPHATE; EFFICIENT; HETEROJUNCTION; ALPHA-FE2O3; CONVERSION; OXIDATION; CATALYST; ROUTE; FILMS;
D O I
10.1039/c8nr06342g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, a high-performance BiVO4 photoanode deposited with serial hole transfer layers was fabricated for photoelectrochemical (PEC) water splitting in order to overcome the shortcomings of pure BiVO4 electrodes in terms of poor charge transport properties and undesirable surface water oxidation kinetics. The hole transfer layer of Fe2O3 was first deposited on the surface of pure BiVO4 to promote the hole transfer from the bulk of the semiconductor to the electrode surface (bulk/surface transfer process), and then the hole transfer layer of NiOOH/FeOOH was deposited on the surface to improve the hole transfer from the electrode surface to the electrolyte (surface/electrolyte transfer process). The results showed a remarkable improvement in PEC water splitting performance for the NiOOH/FeOOH/Fe2O3/BiVO4 photoanode. The photocurrent was up to 2.24 mA cm(-2) at 1.23 V vs. RHE, which was about 2.95 times that of the pristine BiVO4 photoanode. Meanwhile, the charge transport efficiencies in the bulk ((bulk)) and the surface ((surface)) were enhanced by 1.63 and 2.62 times compared to those of the BiVO4 photoanode at 1.23 V vs. RHE, respectively. In addition, the novel photoanode was assembled with a commercial silicon PVC for self-bias PEC water splitting, and a stable photocurrent density of approximate to 2.60 mA cm(-2), corresponding to a approximate to 3.2% STH conversion efficiency, was achieved spontaneously. Our study provided a more efficient serial hole transfer strategy for achieving a BiVO4 photoanode with enhanced PEC water splitting.
引用
收藏
页码:18378 / 18386
页数:9
相关论文
共 50 条
  • [31] Enhanced photoelectrochemical water splitting performance using morphology-controlled BiVO4 with W doping
    Zhao, Xin
    Chen, Zhong
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2017, 8 : 2640 - 2647
  • [32] Efficient promotion of charge separation with reduced graphene oxide (rGO) in BiVO4/rGO photoanode for greatly enhanced photoelectrochemical water splitting
    Soltani, Teyyebah
    Tayyebi, Ahmad
    Lee, Byeong-Kyu
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 185 : 325 - 332
  • [33] Photoelectrochemical cell for unassisted overall solar water splitting using a BiVO4 photoanode and Si nanoarray photocathode
    Xu, Pan
    Feng, Jianyong
    Fang, Tao
    Zhao, Xin
    Li, Zhaosheng
    Zou, Zhigang
    RSC ADVANCES, 2016, 6 (12) : 9905 - 9910
  • [34] Solvent-engineering assisted synthesis and characterization of BiVO4 photoanode for boosting the efficiency of photoelectrochemical water splitting
    Truong-Giang Vo
    Chiu, Jian-Ming
    Chiang, Chia-Ying
    Tai, Yian
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 166 : 212 - 221
  • [35] rGO decorated BiVO4/Cu2O n-n heterojunction photoanode for photoelectrochemical water splitting
    Bai, Shouli
    Han, Jingyi
    Zhao, Yingying
    Chu, Haomiao
    Wei, Shiqiang
    Sun, Jianhua
    Sun, Lixia
    Luo, Ruixian
    Li, Dianqing
    Chen, Aifan
    RENEWABLE ENERGY, 2020, 148 : 380 - 387
  • [36] A nitrogen-rich BiVO4 nanosheet photoanode for photoelectrochemical water oxidation
    Wang, Yi
    Li, Junqi
    Zhang, Beiyi
    Hou, Wenfei
    Xu, Xiaotao
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (22) : 19984 - 19993
  • [37] Simultaneous enhancement in charge separation and interfacial charge transfer of BiVO4 photoanode for photoelectrochemical water oxidation
    Ko, Ting-Rong
    Chueh, Yu-Chien
    Lai, Yi-Hsuan
    Lin, Chia-Yu
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2020, 111 : 80 - 89
  • [38] BiVO4 Photoanode with Exposed (040) Facets for Enhanced Photoelectrochemical Performance
    Xia, Ligang
    Li, Jinhua
    Bai, Jing
    Li, Linsen
    Chen, Shuai
    Zhou, Baoxue
    NANO-MICRO LETTERS, 2018, 10 (01) : 1 - 10
  • [39] Engineering BiVO4 and Oxygen Evolution Cocatalyst Interfaces with Rapid Hole Extraction for Photoelectrochemical Water Splitting
    Zhang, Yingjuan
    Xu, Liangcheng
    Liu, Boyan
    Wang, Xin
    Wang, Tingsheng
    Xiao, Xiong
    Wang, Songcan
    Huang, Wei
    ACS CATALYSIS, 2023, 13 (09) : 5938 - 5948
  • [40] Z-Scheme Transfer Path of Charges in the BiVO4/Bi:ZnIn2S4-Co Photoanode for Photoelectrochemical Water Splitting
    Fu, Xinyang
    Qi, Yixin
    Zhao, Yanan
    Li, Weibing
    Zhang, Yaping
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (24): : 11946 - 11953