SnS particles anchored on Ti3C2 nanosheets as high-performance anodes for lithium-ion batteries

被引:21
|
作者
Wang, Ran-cheng [1 ,2 ,3 ,4 ]
Pan, Qing-lin [1 ]
Luo, Yu-hong [2 ,3 ,4 ]
Yan, Cheng [5 ]
He, Zhen-jiang [2 ,3 ,4 ]
Mao, Jing [6 ]
Dai, Kehua [7 ]
Wu, Xian-wen [8 ]
Zheng, Jun-chao [2 ,3 ,4 ]
机构
[1] Cent South Univ, Light Alloy Res Inst, Changsha 410083, Peoples R China
[2] Cent South Univ, Sch Met & Environm, Changsha 410083, Hunan, Peoples R China
[3] Cent South Univ, Natl Engn Lab High Efficiency Recovery Refractory, Changsha 410083, Peoples R China
[4] Cent South Univ, Engn Res Ctr, Minist Educ Adv Battery Mat, Changsha 410083, Peoples R China
[5] Queensland Univ Technol, Sch Mech Med & Proc Engn, Brisbane, Qld 4001, Australia
[6] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450001, Peoples R China
[7] Tianjin Normal Univ, Coll Chem, Tianjin 300387, Peoples R China
[8] Jishou Univ, Sch Chem & Chem Engn, Jishou 416000, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Mxene; Ti3C2@SnS@C; Electrochemical performance; DOPED GRAPHENE; ENERGY-STORAGE; LI; MXENE; CAPACITY; NA;
D O I
10.1016/j.jallcom.2021.162089
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Tin sulfide (SnS) has been regarded as one of the most attractive anode materials for lithium-ion batteries (LIBs) because of its high specific capacity. However, its large volume expansion (> 300%) and low electronic conductivity restrict its application. In this study, Sn2+ was anchored on Ti3C2 nanosheets through electrostatic attraction, and Ti3C2@SnS@C was synthesized through a hydrothermal method. The obtained Ti3C2@SnS@C exhibits excellent rate performance and cycle performance and effectively serves as an anode material for LIBs. It has a stable capacity of 563.5 mAh/g after 420 cycles at 500 mA/g, and this value is much higher than that of commercially available anode materials. Ti3C2 can also effectively inhibit the volume expansion of SnS particles. The volume expansion of Ti3C2@SnS@C electrode is only 56.8% after 420 cycles at 500 mA/g. This finding is much better than that of pure SnS@C electrode (209.3%). (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Cu2SnS3/rGO nanocomposites with optimized pore structure for high-performance lithium-ion batteries
    Zhang, Xiaoyan
    Lou, Pengfei
    Chen, Suqin
    Wang, Fan
    Cha, Zihao
    JOURNAL OF ENERGY STORAGE, 2024, 102
  • [42] Effective improvement of lithium-ion battery anode performance of Ti3C2 by alkali metal ion treatment strategy
    Xu, Tingting
    Chen, Jinting
    Zhang, Jinghan
    Huang, Haixiang
    Liu, Bogu
    Li, Yawei
    Chen, Xiaohong
    Zeng, Hong
    Wu, Ying
    APPLIED SURFACE SCIENCE, 2025, 679
  • [43] Novel SnS2-nanosheet anodes for lithium-ion batteries
    Kim, Tae-Joon
    Kirn, Chunjoong
    Son, Dongyeon
    Choi, Myungsuk
    Park, Byungwoo
    JOURNAL OF POWER SOURCES, 2007, 167 (02) : 529 - 535
  • [44] Co/CoO@N-C nanocomposites as high-performance anodes for lithium-ion batteries
    Sun, Ming
    Zhang, Hui
    Wang, Yi-Fan
    Liu, Wei-Liang
    Ren, Man-Man
    Kong, Fan-Gong
    Wang, Shou-Juan
    Wang, Xin-Qiang
    Duan, Xiu-Lan
    Ge, Shou-Zhe
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 771 (290-296) : 290 - 296
  • [45] Hollow Ti3C2 MXene/Carbon Nanofibers as an Advanced Anode Material for Lithium-Ion Batteries
    Seo, Darae
    Kim, Mee-Ree
    Song, Jin Kyu
    Kim, Eunji
    Koo, Jaseung
    Kim, Ki-Chul
    Han, Hee
    Lee, Yonghee
    Ahn, Chi Won
    CHEMELECTROCHEM, 2022, 9 (01):
  • [46] Mesoporous CuO Particles Threaded with CNTs for High-Performance Lithium-Ion Battery Anodes
    Ko, Sungwook
    Lee, Jung-In
    Yang, Hee Seung
    Park, Soojin
    Jeong, Unyong
    ADVANCED MATERIALS, 2012, 24 (32) : 4451 - 4456
  • [47] Mesoporous Spherical Li4Ti5O12 as High-Performance Anodes for Lithium-Ion Batteries
    Du, Guojun
    Liu, Zhaolin
    Tay, Siok Wei
    Liu, Xiaogang
    Yu, Aishui
    CHEMISTRY-AN ASIAN JOURNAL, 2014, 9 (09) : 2514 - 2518
  • [48] SnS2-graphene nanocomposites as anodes of lithium-ion batteries
    Wang, Qi
    Nie, Yu-Xin
    He, Bin
    Xing, Li-Li
    Xue, Xin-Yu
    SOLID STATE SCIENCES, 2014, 31 : 81 - 84
  • [49] Green Design of Si/SiO2/C Composites as High-Performance Anodes for Lithium-Ion Batteries
    Wu, Wei
    Wang, Man
    Wang, Jun
    Wang, Chaoyang
    Deng, Yonghong
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (04) : 3884 - 3892
  • [50] S/N dual-doped carbon nanosheets decorated with CoxOy nanoparticles as high-performance anodes for lithium-ion batteries
    Wang, XiaoFei
    Zhu, Yong
    Zhu, Sheng
    Fan, JinChen
    Xu, QunJie
    Min, YuLin
    JOURNAL OF NANOPARTICLE RESEARCH, 2018, 20 (03)