Auxin and Strigolactone Signaling Are Required for Modulation of Arabidopsis Shoot Branching by Nitrogen Supply

被引:100
作者
de Jong, Maaike [1 ]
George, Gilu [2 ]
Ongaro, Veronica [2 ]
Williamson, Lisa [2 ]
Willetts, Barbara [2 ]
Ljung, Karin [3 ]
McCulloch, Hayley [1 ]
Leyser, Ottoline [1 ,2 ]
机构
[1] Univ Cambridge, Sainsbury Lab, Cambridge CB2 1LR, England
[2] Univ York, Dept Biol, York YO10 5DD, N Yorkshire, England
[3] Swedish Univ Agr Sci, Dept Forest Genet & Plant Physiol, Umea Plant Sci Ctr, SE-90183 Umea, Sweden
基金
欧洲研究理事会; 瑞典研究理事会; 英国生物技术与生命科学研究理事会;
关键词
ROOT-SYSTEM ARCHITECTURE; AXILLARY BUD OUTGROWTH; APICAL DOMINANCE; PHOSPHATE DEFICIENCY; CYTOKININ BIOSYNTHESIS; PHOSPHORUS DEFICIENCY; NITRATE RESPONSE; ACTS DOWNSTREAM; ORGAN FORMATION; PISUM-SATIVUM;
D O I
10.1104/pp.114.242388
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The degree of shoot branching is strongly affected by environmental conditions, such as nutrient availability. Here we demonstrate that nitrate limitation reduces shoot branching in Arabidopsis (Arabidopsis thaliana) both by delaying axillary bud activation and by attenuating the basipetal sequence of bud activation that is triggered following floral transition. Ammonium supply has similar effects, suggesting that they are caused by plant nitrogen (N) status, rather than direct nitrate signaling. We identify increased auxin export from active shoot apices, resulting in increased auxin in the polar auxin transport stream of the main stem, as a likely cause for the suppression of basal branches. Consistent with this idea, in the auxin response mutant axr1 and the strigolactone biosynthesis mutant more axillary growth1, increased retention of basal branches on low N is associated with a failure to increase auxin in the main stem. The complex interactions between the hormones that regulate branching make it difficult to rule out other mechanisms of N action, such as up-regulation of strigolactone synthesis. However, the proposed increase in auxin export from active buds can also explain how reduced shoot branching is achieved without compromising root growth, leading to the characteristic shift in relative biomass allocation to the root when N is limiting.
引用
收藏
页码:384 / U549
页数:15
相关论文
共 90 条
[1]   Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds [J].
Aguilar-Martinez, Jose Antonio ;
Poza-Carrion, Cesar ;
Cubas, Pilar .
PLANT CELL, 2007, 19 (02) :458-472
[2]   Competitive canalization of PIN-dependent auxin flow from axillary buds controls pea bud outgrowth [J].
Balla, Jozef ;
Kalousek, Petr ;
Reinoehl, Vilem ;
Friml, Jiri ;
Prochazka, Stanislav .
PLANT JOURNAL, 2011, 65 (04) :571-577
[3]   Local, efflux-dependent auxin gradients as a common module for plant organ formation [J].
Benková, E ;
Michniewicz, M ;
Sauer, M ;
Teichmann, T ;
Seifertová, D ;
Jürgens, G ;
Friml, J .
CELL, 2003, 115 (05) :591-602
[4]   The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport [J].
Bennett, T ;
Sieberer, T ;
Willett, B ;
Booker, J ;
Luschnig, C ;
Leyser, O .
CURRENT BIOLOGY, 2006, 16 (06) :553-563
[5]   Branching in pea - Action of genes rms3 and rms4 [J].
Beveridge, CA ;
Ross, JJ ;
Murfet, IC .
PLANT PHYSIOLOGY, 1996, 110 (03) :859-865
[6]   MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone [J].
Booker, J ;
Sieberer, T ;
Wright, W ;
Williamson, L ;
Willett, B ;
Stirnberg, P ;
Turnbull, C ;
Srinivasan, M ;
Goddard, P ;
Leyser, O .
DEVELOPMENTAL CELL, 2005, 8 (03) :443-449
[7]   MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule [J].
Booker, J ;
Auldridge, M ;
Wills, S ;
McCarty, D ;
Klee, H ;
Leyser, O .
CURRENT BIOLOGY, 2004, 14 (14) :1232-1238
[8]   Auxin acts in xylem-associated or medullary cells to mediate apical dominance [J].
Booker, J ;
Chatfield, S ;
Leyser, O .
PLANT CELL, 2003, 15 (02) :495-507
[9]   Nitrate sensing and signaling in plants [J].
Bouguyon, Eleonore ;
Gojon, Alain ;
Nacry, Philippe .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2012, 23 (06) :648-654
[10]   Diverse Roles of Strigolactones in Plant Development [J].
Brewer, Philip B. ;
Koltai, Hinanit ;
Beveridge, Christine A. .
MOLECULAR PLANT, 2013, 6 (01) :18-28