Advanced aerodynamic stability analysis of long-span suspension bridges

被引:0
|
作者
Zhang, Xin-Jun [1 ]
机构
[1] Zhejiang Univ Technol, Coll Civil Engn & Architecture, Hangzhou 310014, Peoples R China
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
As the span length of suspension bridges increases, the diameter of cables and thus the aerodynamic forces acting on them, the static wind action and the spatial non-uniformity of wind speed all increase consequently, which may have non-negligible influence on the aerodynamic stability of long-span suspension bridges. Considering the static wind action and the spatial non-uniformity of wind speed, the model of nonlinear aerodynamic force is presented, and the advanced nonlinear method of aerodynamic stability analysis is then developed. Using this method, aerodynamic stability analysis is conducted on a long-span suspension bridge (Runyang Bridge) with a main span of 1490 m, and the effects of the static wind action, wind speed spatial non-uniformity, and the cable's aerodynamic force on the aerodynamic stability of the bridge are analytically investigated. The results show that the aerodynamic stability is significantly influenced by the static wind action and wind speed spatial non-uniformity, however the cable's aerodynamic force has no influence on it.
引用
收藏
页码:1420 / 1425
页数:6
相关论文
共 50 条
  • [1] Aerodynamic stability of long-span suspension bridges under erection
    Ge, YJ
    Tanaka, H
    JOURNAL OF STRUCTURAL ENGINEERING-ASCE, 2000, 126 (12): : 1404 - 1412
  • [2] Nonlinear aerodynamic stability analysis of long-span suspension bridges during erection
    Zhang, XJ
    Peng, W
    Sun, BN
    Xiang, HF
    PROCEEDINGS OF THE SEVENTH INTERNATIONAL SYMPOSIUM ON STRUCTURAL ENGINEERING FOR YOUNG EXPERTS, VOLS 1 AND 2, 2002, : 828 - 833
  • [3] Investigation on aerodynamic stability of long-span suspension bridges under erection
    Zhang, XJ
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2004, 92 (01) : 1 - 8
  • [4] Advanced aerostatic analysis of long-span suspension bridges
    Zhang X.-J.
    Journal of Zhejiang University-SCIENCE A, 2006, 7 (3): : 424 - 429
  • [6] UNSTEADY AERODYNAMIC MODELING AND FLUTTER ANALYSIS OF LONG-SPAN SUSPENSION BRIDGES
    Arena, Andrea
    Lacarbonara, Walter
    Marzocca, Pier
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE 2012, VOL 1, PTS A AND B, 2012, : 15 - +
  • [7] Refinements on aerodynamic stability analysis of super long-span bridges
    Xiang, HF
    Ge, YJ
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2002, 90 (12-15) : 1493 - 1515
  • [8] Robustness Evaluation of Aerodynamic Flutter Stability and Aerostatic Torsional Stability of Long-Span Suspension Bridges
    Xia, Qing
    Ge, Yaojun
    Daudeville, Laurent
    APPLIED SCIENCES-BASEL, 2023, 13 (24):
  • [9] Aerodynamic stability of long-span bridges in post flutter
    Wang, Qi
    Liao, Haili
    Li, Mingshui
    Ma, Cunming
    Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, 2013, 48 (06): : 983 - 988
  • [10] NUMERICAL SIMULATION OF AERODYNAMIC STABILITY OF LONG-SPAN BRIDGES
    Kozlov, A., V
    Safronov, V. S.
    RUSSIAN JOURNAL OF BUILDING CONSTRUCTION AND ARCHITECTURE, 2021, (04): : 106 - 114