Symmetric Periodic Orbits and Uniruled Real Liouville Domains

被引:1
|
作者
Frauenfelder, Urs [1 ]
van Koert, Otto [2 ,3 ]
机构
[1] Univ Augsburg, Dept Math, D-86159 Augsburg, Germany
[2] Seoul Natl Univ, Dept Math, Seoul 08826, South Korea
[3] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Symmetric periodic orbits; Real symplectic manifolds; Real uniruledness; WEINSTEIN CONJECTURE; INVARIANCE;
D O I
10.1007/s11401-016-1012-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A real Liouville domain is a Liouville domain with an exact anti-symplectic involution. The authors call a real Liouville domain uniruled if there exists an invariant finite energy plane through every real point. Asymptotically, an invariant finite energy plane converges to a symmetric periodic orbit. In this note, they work out a criterion which guarantees uniruledness for real Liouville domains.
引用
收藏
页码:607 / 624
页数:18
相关论文
共 33 条
  • [21] Periodic orbits in virtually contact structures
    Bae, Youngjin
    Wiegand, Kevin
    Zehmisch, Kai
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2020, 12 (02) : 371 - 418
  • [22] Periodic orbits of the Sitnikov problem via a Poincaré map
    Montserrat Corbera
    Jaume Llibre
    Celestial Mechanics and Dynamical Astronomy, 2000, 77 : 273 - 303
  • [23] Periodic orbits of the Sitnikov problem via a Poincare map
    Corbera, M
    Llibre, J
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2000, 77 (04) : 273 - 303
  • [24] Finsler geodesics, periodic Reeb orbits, and open books
    Dörner M.
    Geiges H.
    Zehmisch K.
    European Journal of Mathematics, 2017, 3 (4) : 1058 - 1075
  • [25] Action and index spectra and periodic orbits in Hamiltonian dynamics
    Ginzburg, Viktor L.
    Guerel, Basak Z.
    GEOMETRY & TOPOLOGY, 2009, 13 : 2745 - 2805
  • [26] Generation of symmetric periodic orbits by a heteroclinic loop formed by two singular points and their invariant manifolds of dimensions 1 and 2 in R3
    Corbera, Montserrat
    Llibre, Jaume
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (09): : 3295 - 3302
  • [27] Amplitude equations close to a triple-(+1) bifurcation point of D4-symmetric periodic orbits in O(2)-equivariant systems
    Sanchez, Juan
    Net, Marta
    Vega, Jose M.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2006, 6 (06): : 1357 - 1380
  • [28] On periodic orbits in cotangent bundles of non-compact manifolds
    van den Berg, J. B.
    Pasquotto, F.
    Rot, T.
    Vandervorst, R. C. A. M.
    JOURNAL OF SYMPLECTIC GEOMETRY, 2016, 14 (04) : 1145 - 1173
  • [29] ON THE EXISTENCE OF PERIODIC ORBITS FOR MAGNETIC SYSTEMS ON THE TWO-SPHERE
    Benedetti, Gabriele
    Zehmisch, Kai
    JOURNAL OF MODERN DYNAMICS, 2015, 9 : 141 - 146
  • [30] Infinitely many periodic orbits for the octahedral 7-body problem
    Corbera M.
    Llibre J.
    Qualitative Theory of Dynamical Systems, 2008, 7 (1) : 101 - 122