Symmetric Periodic Orbits and Uniruled Real Liouville Domains

被引:1
|
作者
Frauenfelder, Urs [1 ]
van Koert, Otto [2 ,3 ]
机构
[1] Univ Augsburg, Dept Math, D-86159 Augsburg, Germany
[2] Seoul Natl Univ, Dept Math, Seoul 08826, South Korea
[3] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Symmetric periodic orbits; Real symplectic manifolds; Real uniruledness; WEINSTEIN CONJECTURE; INVARIANCE;
D O I
10.1007/s11401-016-1012-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A real Liouville domain is a Liouville domain with an exact anti-symplectic involution. The authors call a real Liouville domain uniruled if there exists an invariant finite energy plane through every real point. Asymptotically, an invariant finite energy plane converges to a symmetric periodic orbit. In this note, they work out a criterion which guarantees uniruledness for real Liouville domains.
引用
收藏
页码:607 / 624
页数:18
相关论文
共 33 条