Approximation properties of Bezier-summation-integral type operators based on Polya-Bernstein functions

被引:36
作者
Agrawal, P. N. [1 ]
Ispir, Nurhayat [2 ]
Kajla, Arun [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, India
[2] Gazi Univ, Dept Math, Fac Sci, TR-06500 Ankara, Turkey
关键词
Bezier operators; Summation integral type operators; Polya distribution; Rate of convergence; Bounded variation; CONVERGENCE; DERIVATIVES; POLYNOMIALS;
D O I
10.1016/j.amc.2015.03.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we introduce the Bezier variant of summation integral type operators having Polya and Bernstein basis functions. We give a direct approximation theorem by means of the first order modulus of smoothness and the rate of convergence for absolutely continuous functions having a derivative equivalent to a function of bounded variation. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:533 / 539
页数:7
相关论文
共 17 条
[1]   Generalized Baskakov-Szász type operators [J].
Agrawal, P.N. ;
Gupta, Vijay ;
Sathish Kumar, A. ;
Kajla, Arun .
Applied Mathematics and Computation, 2014, 236 :311-324
[2]  
Agrawal P. N., KANTOROVICH MO UNPUB
[3]  
[Anonymous], 1987, Studia Universitatis Babes-Bolyai Mathematica
[4]   RATE OF CONVERGENCE OF BERNSTEIN POLYNOMIALS FOR FUNCTIONS WITH DERIVATIVES OF BOUNDED VARIATION [J].
BOJANIC, R ;
CHENG, F .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 141 (01) :136-151
[5]   RATE OF CONVERGENCE OF HERMITE-FEJER POLYNOMIALS FOR FUNCTIONS WITH DERIVATIVES OF BOUNDED VARIATION [J].
BOJANIC, R ;
CHENG, F .
ACTA MATHEMATICA HUNGARICA, 1992, 59 (1-2) :91-102
[6]  
Chang GZ, 1983, J COMPUT MATH, V1, P322
[7]  
Ditzian Z., 1987, Springer Series in Computational Mathematics
[8]  
[郭顺生 Guo Shunsheng], 2010, [数学物理学报. A辑, Acta Mathematica Scientia], V30, P1424
[9]  
Gupta V., 2003, J INEQUAL PURE APPL, V4, P1
[10]   LUPAS-DURRMEYER OPERATORS BASED ON POLYA DISTRIBUTION [J].
Gupta, Vijay ;
Rassias, Themistocles M. .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2014, 8 (02) :146-155