Spatially Localized Structures in Lattice Dynamical Systems

被引:15
作者
Bramburger, Jason J. [1 ]
Sandstede, Bjorn [1 ]
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02912 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Localized structures; Lattice dynamical systems; Bifurcation; Diffeomorphism; HOMOCLINIC SNAKING; PATTERN-FORMATION; ISOLAS; SNAKES; STATES; EXISTENCE; SOLITONS; LADDERS;
D O I
10.1007/s00332-019-09584-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate stationary, spatially localized patterns in lattice dynamical systems that exhibit bistability. The profiles associated with these patterns have a long plateau where the pattern resembles one of the bistable states, while the profile is close to the second bistable state outside this plateau. We show that the existence branches of such patterns generically form either an infinite stack of closed loops (isolas) or intertwined s-shaped curves (snaking). We then use bifurcation theory near the anti-continuum limit, where the coupling between edges in the lattice vanishes, to prove existence of isolas and snaking in a bistable discrete real Ginzburg-Landau equation. We also provide numerical evidence for the existence of snaking diagrams for planar localized patches on square and hexagonal lattices and outline a strategy to analyse them rigorously.
引用
收藏
页码:603 / 644
页数:42
相关论文
共 41 条
[1]  
[Anonymous], 2011, LMS Lecture Note Series
[2]   Isolas Versus Snaking of Localized Rolls [J].
Aougab, Tarik ;
Beck, Margaret ;
Carter, Paul ;
Desai, Surabhi ;
Sandstede, Bjorn ;
Stadt, Melissa ;
Wheeler, Aric .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2019, 31 (03) :1199-1222
[3]   To Snake or Not to Snake in the Planar Swift-Hohenberg Equation [J].
Avitabile, Daniele ;
Lloyd, David J. B. ;
Burke, John ;
Knobloch, Edgar ;
Sandstede, Bjoern .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2010, 9 (03) :704-733
[4]   SNAKES, LADDERS, AND ISOLAS OF LOCALIZED PATTERNS [J].
Beck, Margaret ;
Knobloch, Juergen ;
Lloyd, David J. B. ;
Sandstede, Bjoern ;
Wagenknecht, Thomas .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (03) :936-972
[5]   The numerical computation of homoclinic orbits for maps [J].
Beyn, WJ ;
Kleinkauf, JM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (03) :1207-1236
[6]  
Bramburger J.J., 2019, PREPRINT
[7]   Localized states in the generalized Swift-Hohenberg equation [J].
Burke, John ;
Knobloch, Edgar .
PHYSICAL REVIEW E, 2006, 73 (05)
[8]   Snakes and ladders: Localized states in the Swift-Hohenberg equation [J].
Burke, John ;
Knobloch, Edgar .
PHYSICS LETTERS A, 2007, 360 (06) :681-688
[9]   Multistable solitons in the cubic-quintic discrete nonlinear Schrodinger equation [J].
Carretero-Gonzalez, R. ;
Talley, J. D. ;
Chong, C. ;
Malomed, B. A. .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 216 (01) :77-89
[10]   Exponential asymptotics of localised patterns and snaking bifurcation diagrams [J].
Chapman, S. J. ;
Kozyreff, G. .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (03) :319-354