Localization in one-dimensional random random walks

被引:19
|
作者
Compte, A
Bouchaud, JP
机构
[1] Ctr Etud Saclay, Serv Phys Etat Condense, F-91191 Gif Sur Yvette, France
[2] Univ Autonoma Barcelona, Dept Fis, Bellaterra 08193, Catalonia, Spain
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1998年 / 31卷 / 29期
关键词
D O I
10.1088/0305-4470/31/29/004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Diffusion in a one-dimensional random force field leads to interesting localization effects, which we study using the equivalence with a directed walk model with traps. We show that although the average dispersion of positions <([x(2)] - [x](2))over bar> diverges for long times, the probability that two independent particles occupy the same site tends to a finite constant in the small bias phase of the model. Interestingly, the long-time properties of this off-equilibrium, ageing phase is similar to the equilibrium phase of the random energy model.
引用
收藏
页码:6113 / 6121
页数:9
相关论文
共 50 条
  • [41] Aging and sub-aging for one-dimensional random walks amongst random conductances
    Croydon, D. A.
    Kious, D.
    Scali, C.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2025, 182
  • [42] Computer Simulations for Some One-Dimensional Models of Random Walks in Fluctuating Random Environment
    C. Boldrighini
    G. Cosimi
    S. Frigio
    A. Pellegrinotti
    Journal of Statistical Physics, 2005, 121 : 361 - 372
  • [43] Computer simulations for some one-dimensional models of random walks in fluctuating random environment
    Boldrighini, C
    Cosimi, G
    Frigio, S
    Pellegrinotti, A
    JOURNAL OF STATISTICAL PHYSICS, 2005, 121 (3-4) : 361 - 372
  • [44] A log-scale limit theorem for one-dimensional random walks in random environments
    Roitershtein, A
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2005, 10 : 244 - 253
  • [45] Simple transient random walks in one-dimensional random environment: the central limit theorem
    Goldsheid, Ilya Ya.
    PROBABILITY THEORY AND RELATED FIELDS, 2007, 139 (1-2) : 41 - 64
  • [46] Occupation time theorems for one-dimensional random walks and diffusion processes in random environments
    Kasahara, Yuji
    Watanabe, Shinzo
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (02) : 347 - 372
  • [47] Finite-sized one-dimensional lazy random walks
    Kumar, M. Maneesh
    Manikandan, K.
    Sankaranarayanan, R.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (11):
  • [48] Full-record statistics of one-dimensional random walks
    Regnier, Leo
    Dolgushev, Maxim
    Benichou, Olivier
    PHYSICAL REVIEW E, 2024, 109 (06)
  • [49] A problem of Erdos-Revesz on one-dimensional random walks
    Shi, Z
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 1999, 35 (1-2) : 113 - 131
  • [50] Random walks in one-dimensional environments with feedback-coupling
    B. Schulz
    S. Trimper
    M. Schulz
    The European Physical Journal B - Condensed Matter and Complex Systems, 2000, 15 : 499 - 505