Localization in one-dimensional random random walks

被引:19
|
作者
Compte, A
Bouchaud, JP
机构
[1] Ctr Etud Saclay, Serv Phys Etat Condense, F-91191 Gif Sur Yvette, France
[2] Univ Autonoma Barcelona, Dept Fis, Bellaterra 08193, Catalonia, Spain
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1998年 / 31卷 / 29期
关键词
D O I
10.1088/0305-4470/31/29/004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Diffusion in a one-dimensional random force field leads to interesting localization effects, which we study using the equivalence with a directed walk model with traps. We show that although the average dispersion of positions <([x(2)] - [x](2))over bar> diverges for long times, the probability that two independent particles occupy the same site tends to a finite constant in the small bias phase of the model. Interestingly, the long-time properties of this off-equilibrium, ageing phase is similar to the equilibrium phase of the random energy model.
引用
收藏
页码:6113 / 6121
页数:9
相关论文
共 50 条
  • [2] Loops in one-dimensional random walks
    S. Wolfling
    Y. Kantor
    The European Physical Journal B - Condensed Matter and Complex Systems, 1999, 12 : 569 - 577
  • [3] Loops in one-dimensional random walks
    Wolfling, S
    Kantor, Y
    EUROPEAN PHYSICAL JOURNAL B, 1999, 12 (04) : 569 - 577
  • [4] Asymmetric one-dimensional random walks
    Antczak, Grazyna
    Ehrlich, Gert
    JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (12)
  • [5] PERSISTENT RANDOM-WALKS IN A ONE-DIMENSIONAL RANDOM ENVIRONMENT
    SZASZ, D
    TOTH, B
    JOURNAL OF STATISTICAL PHYSICS, 1984, 37 (1-2) : 27 - 38
  • [6] Random Walks in a One-Dimensional Lévy Random Environment
    Alessandra Bianchi
    Giampaolo Cristadoro
    Marco Lenci
    Marilena Ligabò
    Journal of Statistical Physics, 2016, 163 : 22 - 40
  • [7] RANDOM-WALKS IN ONE-DIMENSIONAL RANDOM-MEDIA
    BERNASCONI, J
    SCHNEIDER, WR
    HELVETICA PHYSICA ACTA, 1985, 58 (04): : 597 - 621
  • [8] Random Walks in a One-Dimensional L,vy Random Environment
    Bianchi, Alessandra
    Cristadoro, Giampaolo
    Lenci, Marco
    Ligabo, Marilena
    JOURNAL OF STATISTICAL PHYSICS, 2016, 163 (01) : 22 - 40
  • [9] Systems of One-dimensional Random Walks in a Common Random Environment
    Peterson, Jonathon
    ELECTRONIC JOURNAL OF PROBABILITY, 2010, 15 : 1024 - 1040
  • [10] Martingale methods for random walks in a one-dimensional random environment
    Butov, AA
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1995, 39 (04) : 558 - 572