A hierarchical and parallel framework for End-to-End Aspect-based Sentiment Analysis

被引:4
作者
Xiao, Ding [1 ]
Ren, Feiyang [2 ]
Pang, Xiaoxuan [1 ]
Cai, Ming [1 ]
Wang, Qianyu [3 ]
He, Ming [4 ]
Peng, Jiawei [1 ]
Fu, Hao [5 ]
机构
[1] Zhejiang Univ, Dept Comp Sci & Technol, Hangzhou 310027, Peoples R China
[2] Business Grp Alibaba, Business Dept Basic Prod, Hangzhou 310027, Peoples R China
[3] Microsoft China Co Ltd, M365, Suzhou 215123, Peoples R China
[4] Shanghai Jiao Tong Univ, Dept Elect Engn, Shanghai 200240, Peoples R China
[5] China Zheshang Bank, Fintech Dept, Hangzhou 311200, Peoples R China
基金
中国国家自然科学基金;
关键词
End-to-end aspect-based sentiment analysis; Specific-layer joint model; Multiple-layer joint model; Parallel execution; EXTRACTION;
D O I
10.1016/j.neucom.2021.09.021
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pipeline, joint, and collapsed models are three major approaches to solving End-to-End Aspect-based Sentiment Analysis (E2E-ABSA) task. Prior works found that joint models were consistently surpassed by the other two. To explore the potential of joint model for E2E-ABSA, we propose a hierarchical and parallel joint framework on the basis of exploiting the hierarchical nature of the pre-trained language model and performing parallel inference of the subtasks. Our framework: (1) shares the same pre-trained backbone network between two subtasks, ensuring the associations and commonalities between them; (2) considers the hierarchical feature of the deep neural network and introduces two joint approaches, namely the specific-layer joint model and multiple-layer joint model, coupling two specific layers or multiple task-related layers with subtasks; (3) carries out parallel execution in both training and inference processes, improving the inference throughput and al-leviating the target-polarity mismatch problem. The experimental results on three benchmark datasets demonstrate that our approach outper-forms the state-of-the-art works. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:549 / 560
页数:12
相关论文
empty
未找到相关数据