Local Ensemble Transform Kalman Filter Experiments with the Nonhydrostatic Icosahedral Atmospheric Model NICAM

被引:31
作者
Terasaki, Koji [1 ]
Sawada, Masahiro [4 ]
Miyoshi, Takemasa [1 ,2 ,3 ]
机构
[1] RIKEN Adv Inst Computat Sci, Kobe, Hyogo 6500047, Japan
[2] Univ Maryland, College Pk, MD 20742 USA
[3] Japan Agcy Marine Earth Sci & Technol, Yokohama, Kanagawa, Japan
[4] Univ Tokyo, Atmosphere & Ocean Res Inst, Kashiwa, Chiba, Japan
来源
SOLA | 2015年 / 11卷
关键词
DATA ASSIMILATION;
D O I
10.2151/sola.2015-006
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The Local Ensemble Transform Kalman Filter (LETKF) is implemented with the Non-hydrostatic Icosahedral Atmospheric Model (NICAM) to assimilate the real-world observation data. First, the NICAM-LETKF system was developed using grid conversions between the NICAM's icosahedral grid and LETKF's uniform longitude-latitude grid to take advantage of the existing codes of Miyoshi. The grid conversions require additional computations and may cause additional interpolation error. Therefore, the LETKF code is modified, so that the LETKF reads and writes the NICAM's icosahedral grid data directly. We call this new version ICO-LETKF. In this study, the two systems are tested and compared using real conventional observations. The results show that the ICO-LETKF successfully accelerates the computations and improves the analyses.
引用
收藏
页码:23 / 26
页数:4
相关论文
共 15 条
[1]  
[Anonymous], 2005, Ensemble Kalman Filter Experiments with a Primitive-equation Global Model
[2]  
Bishop CH, 2001, MON WEATHER REV, V129, P420, DOI 10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO
[3]  
2
[4]  
Brian R. H., 2007, PHYSICA D, V230, P112, DOI [10.1016/j.physd.2006.11.008, DOI 10.1016/J.PHYSD.2006.11.008]
[5]   The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].
Dee, D. P. ;
Uppala, S. M. ;
Simmons, A. J. ;
Berrisford, P. ;
Poli, P. ;
Kobayashi, S. ;
Andrae, U. ;
Balmaseda, M. A. ;
Balsamo, G. ;
Bauer, P. ;
Bechtold, P. ;
Beljaars, A. C. M. ;
van de Berg, L. ;
Bidlot, J. ;
Bormann, N. ;
Delsol, C. ;
Dragani, R. ;
Fuentes, M. ;
Geer, A. J. ;
Haimberger, L. ;
Healy, S. B. ;
Hersbach, H. ;
Holm, E. V. ;
Isaksen, L. ;
Kallberg, P. ;
Koehler, M. ;
Matricardi, M. ;
McNally, A. P. ;
Monge-Sanz, B. M. ;
Morcrette, J. -J. ;
Park, B. -K. ;
Peubey, C. ;
de Rosnay, P. ;
Tavolato, C. ;
Thepaut, J. -N. ;
Vitart, F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :553-597
[6]   Applying the Local Ensemble Transform Kalman Filter to the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) [J].
Kondo, Keiichi ;
Tanaka, H. L. .
SOLA, 2009, 5 :121-124
[7]   Local ensemble transform Kalman filtering with an AGCM at a T159/L48 resolution [J].
Miyoshi, Takemasa ;
Yamane, Shozo .
MONTHLY WEATHER REVIEW, 2007, 135 (11) :3841-3861
[8]   The Gaussian Approach to Adaptive Covariance Inflation and Its Implementation with the Local Ensemble Transform Kalman Filter [J].
Miyoshi, Takemasa .
MONTHLY WEATHER REVIEW, 2011, 139 (05) :1519-1535
[9]   Ensemble Kalman Filter and 4D-Var Intercomparison with the Japanese Operational Global Analysis and Prediction System [J].
Miyoshi, Takemasa ;
Sato, Yoshiaki ;
Kadowaki, Takashi .
MONTHLY WEATHER REVIEW, 2010, 138 (07) :2846-2866
[10]   Localizing the Error Covariance by Physical Distances within a Local Ensemble Transform Kalman Filter (LETKF) [J].
Miyoshi, Takemasa ;
Yamane, Shozo ;
Enomoto, Takeshi .
SOLA, 2007, 3 :89-92