ENTIRE EXTENSIONS AND EXPONENTIAL DECAY FOR SEMILINEAR ELLIPTIC EQUATIONS

被引:28
作者
Cappiello, Marco [1 ]
Gramchev, Todor [2 ]
Rodino, Luigi [1 ]
机构
[1] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
[2] Univ Cagliari, Dipartimento Matemat & Informat, I-09124 Cagliari, Italy
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2010年 / 111卷
关键词
R-N; SPACES;
D O I
10.1007/s11854-010-0021-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider semilinear partial differential equations in R(n) of the form Sigma(vertical bar alpha vertical bar/m + vertical bar beta vertical bar/k <= 1) c(alpha beta)x(beta)D(x)(alpha)u = F(u), where k and m are given positive integers. Relevant examples are semilinear Schrodinger equations -Delta u + V(x)u = F(u), where the potential V(x) is given by an elliptic polynomial. We propose techniques, based on anisotropic generalizations of the global ellipticity condition of M. Shubin and multiparameter Picard type schemes in spaces of entire functions, which lead to new results for entire extensions and asymptotic behaviour of the solutions. Namely, we study solutions (eigenfunctions and homoclinics) in the framework of the Gel'fand-Shilov spaces S(nu)(mu)(R(n)). Critical thresholds are identified for the indices mu and nu, corresponding to analytic regularity and asymptotic decay, respectively. In the one-dimensional case -u'' + V(x)u = F(u), our results for linear equations link up with those given by the classical asymptotic theory and by the theory of ODE in the complex domain, whereas for homoclinics, new phenomena concerning analytic extensions are described.
引用
收藏
页码:339 / 367
页数:29
相关论文
共 27 条
[11]   ULTRACONTRACTIVITY AND THE HEAT KERNEL FOR SCHRODINGER-OPERATORS AND DIRICHLET LAPLACIANS [J].
DAVIES, EB ;
SIMON, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1984, 59 (02) :335-395
[12]  
GELFAND I. M., 1968, Generalized Functions II, V2
[13]  
Gramchev T., 2003, REND SEM MAT U POL T, V61, P101
[14]  
GRAMCHEV T, 2000, PARTIAL DIFFERENTIAL
[15]  
Hislop P. D., 1996, INTRO SPECTRAL THEOR
[16]  
Mascarello M., 1997, PARTIAL DIFFERENTIAL
[17]  
Mityagin B. S., 1970, AM MATH SOC TRANSL 2, V93, P45
[18]  
PILIPOVIC S, 1988, B UNIONE MAT ITAL, V2B, P235
[19]   Asymptotic behavior of the solutions of linear and quasilinear elliptic equations on RN [J].
Rabier, PJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (05) :1889-1907
[20]   Exponential decay of the solutions of quasilinear second-order equations and Pohozaev identities [J].
Rabier, PJ ;
Stuart, CA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 165 (01) :199-234