Scherk saddle towers of genus two in R3

被引:0
作者
da Silva, M. F. [1 ]
Ramos Batista, V. [1 ]
机构
[1] ABC Fed Univ, CMCC, BR-09090400 Santo Andre, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Minimal; Surfaces; EMBEDDED MINIMAL-SURFACES; CONSTRUCTION;
D O I
10.1007/s10711-010-9464-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1996 Traizet obtained singly periodic minimal surfaces with Scherk ends of arbitrary genus by desingularizing a set of vertical planes at their intersections. However, in Traizet's work it is not allowed that three or more planes intersect at the same line. In our paper, by a saddle-tower we call the desingularization of such "forbidden" planes into an embedded singly periodic minimal surface. We give explicit examples of genus two and discuss some advances regarding this problem. Moreover, our examples are the first ones containing Gaussian geodesics, and for the first time we prove embeddedness of the surfaces CSSCFF and CSSCCC from Callahan-Hoffman-Meeks-Wohlgemuth.
引用
收藏
页码:59 / 71
页数:13
相关论文
共 30 条
  • [1] Baginski Frank., SOLVING PERIOD PROBL
  • [2] BATISTA R, 2000, THESIS U BONN
  • [3] A characterisation of the Hoffman-Wohlgemuth surfaces in terms of their symmetries
    Batista, V. Ramos
    Simoes, P.
    [J]. GEOMETRIAE DEDICATA, 2009, 142 (01) : 191 - 214
  • [4] Singly periodic Costa surfaces
    Batista, VR
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 72 : 478 - 496
  • [5] Batista VR, 2004, TOHOKU MATH J, V56, P237
  • [6] A family of triply periodic Costa surfaces
    Batista, VR
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2003, 212 (02) : 347 - 370
  • [7] The doubly periodic Costa surfaces
    Batista, VR
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2002, 240 (03) : 549 - 577
  • [8] Costa C.J., 1984, Boletim da Sociedade Brasileira de Matematica-Bulletin/Brazilian Mathematical Society, V15, P47, DOI [10.1007/BF02584707, DOI 10.1007/BF02584707]
  • [9] AN END-TO-END CONSTRUCTION FOR SINGLY PERIODIC MINIMAL SURFACES
    Hauswirth, Laurent
    Morabito, Filippo
    Magdalena Rodriguez, M.
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2009, 241 (01) : 1 - 61
  • [10] EMBEDDED MINIMAL-SURFACES OF FINITE TOPOLOGY
    HOFFMAN, D
    MEEKS, WH
    [J]. ANNALS OF MATHEMATICS, 1990, 131 (01) : 1 - 34