Constructing a Z-Scheme Heterojunction Photocatalyst of GaPO4/α-MoC/Ga2O3 without Mingling Type-II Heterojunction for CO2 Reduction to CO

被引:45
作者
Liang, Xinxin [1 ]
Zhao, Jie [1 ]
Wang, Ting [1 ]
Zhang, Zexing [1 ]
Qu, Miao [1 ]
Wang, Chuanyi [1 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Environm Sci & Engn, Xian 710021, Shaanxi, Peoples R China
关键词
Z-scheme heterojunction; type-II heterojunction; photocatalytic CO2 reduction; alpha-MoC; GaPO4; CATALYSTS SURFACE; RECENT PROGRESS; PHASE JUNCTION; CARBON-DIOXIDE; GALLIUM OXIDE; TIO2; PHOTOREDUCTION; SEPARATION; CONVERSION; RUTILE;
D O I
10.1021/acsami.1c07757
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Constructing Z-scheme heterojunction photocatalysts is a prevalent strategy to prolong the lifetime of photoinduced charge carriers without reducing their redox potentials. Nevertheless, these photocatalysts were usually mingled with type-II heterojunction, leading to a decrease in the redox potentials of photoinduced charge carriers. Herein, based on the absolute electronegativity of semiconductors, a Z-scheme heterojunction photocatalyst of GaPO4/alpha-MoC/ Ga2O3 was designed and successfully constructed, in which the formation of typeII heterojunction was prevented between GaPO4 and Ga2O3. In the GaPO4/alpha-MoC/Ga2O3 photocatalyst, the conduction band (CB) and valance band (VB) potentials and the Fermi level of Ga2O3 are higher than those of GaPO4, respectively. Under irradiation, photoinduced electrons on the CB of GaPO4 migrate to the electron mediator a-MoC and subsequently recombine with the photoinduced holes of Ga2O3, thereby retaining the photoinduced charge carriers with higher redox potentials. As a result, GaPO4/alpha-MoC/Ga2O3 exhibits a 4-fold enhancement of activity for CO2 photoreduction, compared to Ga2O3. Photocatalytic mechanism studies indicate that superoxide radicals might be an important intermediate for CO2 reduction to CO. The present work supplies a paradigm to construct a Z-scheme heterostructure without mingling type-II heterojunction via energy band engineering.
引用
收藏
页码:33034 / 33044
页数:11
相关论文
共 50 条
  • [21] Construction of Z-Scheme MnO2/BiOBr Heterojunction for Photocatalytic Ciprofloxacin Removal and CO2 Reduction
    Dong, Jintao
    Ji, Sainan
    Zhang, Yi
    Ji, Mengxia
    Wang, Bin
    Li, Yingjie
    Chen, Zhigang
    Xia, Jiexiang
    Li, Huaming
    ACTA PHYSICO-CHIMICA SINICA, 2023, 39 (11)
  • [22] Adsorbed Species of CO2 and H2 on Ga2O3 for the Photocatalytic Reduction of CO2
    Tsuneoka, Hideo
    Teramura, Kentaro
    Shishido, Tetsuya
    Tanaka, Tsunehiro
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (19) : 8892 - 8898
  • [23] Dual Z-Scheme Heterojunction SiC-Sandwiched InVO4 Nanoflowers for Boosting Visible-Light Photocatalytic CO2 Reduction with H2O
    Chen, Hui
    Yang, Xin
    Lin, Min
    Li, Dongmiao
    Wang, Bing
    Shen, Jinni
    Long, Jinlin
    Dai, Wenxin
    Wang, Xuxu
    Zhang, Zizhong
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (51) : 18029 - 18040
  • [24] Facilely fabrication of the direct Z-scheme heterojunction of NH2-UiO-66 and CeCO3OH for photocatalytic reduction of CO2 to CO and CH4
    Mei, Yuxin
    Yuan, Nicui
    Xie, Yating
    Li, Yaping
    Lin, Baining
    Zhou, Yonghua
    APPLIED SURFACE SCIENCE, 2022, 597
  • [25] Effect of Ag co-catalyst on CO2 adsorption states over Ga2O3 photocatalyst
    Yamamoto, Muneaki
    Yagi, Shinya
    Yoshida, Tomoko
    CATALYSIS TODAY, 2018, 303 : 334 - 340
  • [26] Arsenene/Ti2CO2 Heterojunction as a Promising Z-Scheme Photocatalyst for Overall Water Splitting
    Hua, Ling
    Wang, Youxi
    Li, Zhenyu
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (48)
  • [27] A novel ternary metal oxide cascade Z-scheme heterojunction for efficient CO2 photoconversion without a co-catalyst
    Prajapati, Pankaj Kumar
    Garg, Devesh
    Malik, Anil
    Kumar, Dileep
    Amoli, Vipin
    Jain, Suman L.
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (04):
  • [28] Z-scheme g-C3N4/Bi2O2[BO2(OH)] heterojunction for enhanced photocatalytic CO2 reduction
    Guo, Lina
    You, Yong
    Huang, Hongwei
    Tian, Na
    Ma, Tianyi
    Zhang, Yihe
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 568 : 139 - 147
  • [29] Z-Scheme MoS2/g-C3N4 heterojunction for efficient visible light photocatalytic CO2 reduction
    Qin, Hao
    Guo, Rui-Tang
    Liu, Xing-Yu
    Pan, Wei-Guo
    Wang, Zhong-Yi
    Shi, Xu
    Tang, Jun-Ying
    Huang, Chun-Ying
    DALTON TRANSACTIONS, 2018, 47 (42) : 15155 - 15163
  • [30] Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst
    Yang Yi
    Wang Shuang
    Wang Wendan
    Chen Limiao
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2024, 40 (05) : 895 - 906