Solving optimal reactive power dispatch problem using a novel teaching-learning-based optimization algorithm

被引:95
作者
Ghasemi, Mojtaba [1 ]
Taghizadeh, Mandi [1 ]
Ghavidel, Sahand [1 ]
Aghaei, Jamshid [1 ]
Abbasian, Abbas [2 ]
机构
[1] Shiraz Univ Technol, Dept Elect & Elect Engn, Shiraz, Iran
[2] Hakim Sabzevari Univ, Dept Mat & Polymers Engn, Sabzevar, Iran
关键词
Gaussian bare-bones teaching-learning-based optimization; Power systems; ORPD problem; Control variables; PARTICLE SWARM OPTIMIZATION; IMPERIALIST COMPETITIVE ALGORITHM; DIFFERENTIAL EVOLUTION; TRANSIENT STABILITY; HYBRID ALGORITHM; FLOW PROBLEM; NONSMOOTH; DEVICES; SEARCH; SVC;
D O I
10.1016/j.engappai.2014.12.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper presents a novel teaching-learning-based optimization (TLBO) algorithm, the Gaussian bare-bones TLBO (GBTLBO) algorithm, with its modified version (MGBTLBO) for the optimal reactive power dispatch (ORPD) problem with discrete and continuous control variables in the standard IEEE power systems for reduction in power transmission loss. The feasibility and performance of the GBTLBO and MGBTLBO algorithms are demonstrated for standard IEEE 14-bus and standard IEEE 30-bus systems. A comparison of simulation results reveals optimization efficacy of the GBTLBO and MGBTLBO algorithms over other well established other algorithms like bare-bones differential evolution (BBDE) and barebones particle swarm optimization (BBPSO) algorithm. Results for ORPD problem demonstrate superiority in terms of solution quality of the GBTLBO and MGBTLBO algorithms over original TLBO algorithm and other algorithm. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:100 / 108
页数:9
相关论文
共 55 条
[1]   Differential evolution algorithm for optimal reactive power dispatch [J].
Abou El Ela, A. A. ;
Abido, M. A. ;
Spea, S. R. .
ELECTRIC POWER SYSTEMS RESEARCH, 2011, 81 (02) :458-464
[2]   OPTIMAL VAR PLANNING BY APPROXIMATION METHOD FOR RECURSIVE MIXED-INTEGER LINEAR-PROGRAMMING [J].
AOKI, K ;
FAN, M ;
NISHIKORI, A .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1988, 3 (04) :1741-1747
[3]   Artificial bee colony algorithm solution for optimal reactive power flow [J].
Ayan, Kursat ;
Kilic, Ulas .
APPLIED SOFT COMPUTING, 2012, 12 (05) :1477-1482
[4]   Reactive power control using dynamic Particle Swarm Optimization for real power loss minimization [J].
Badar, Altaf Q. H. ;
Umre, B. S. ;
Junghare, A. S. .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2012, 41 (01) :133-136
[5]   Tuned reactive power dispatch through modified differential evolution technique [J].
S. Biswas Raha ;
N. Chakraborty .
Frontiers in Energy, 2012, 6 (2) :138-147
[6]   The particle swarm - Explosion, stability, and convergence in a multidimensional complex space [J].
Clerc, M ;
Kennedy, J .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (01) :58-73
[7]   Seeker Optimization Algorithm for Optimal Reactive Power Dispatch [J].
Dai, Chaohua ;
Chen, Weirong ;
Zhu, Yunfang ;
Zhang, Xuexia .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2009, 24 (03) :1218-1231
[8]   Differential Evolution: A Survey of the State-of-the-Art [J].
Das, Swagatam ;
Suganthan, Ponnuthurai Nagaratnam .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2011, 15 (01) :4-31
[9]   Optimal reactive power flow via the modified barrier Lagrangian function approach [J].
de Sousa, V. A. ;
Baptista, E. C. ;
da Costa, G. R. M. .
ELECTRIC POWER SYSTEMS RESEARCH, 2012, 84 (01) :159-164
[10]   Loss minimization by the predictor-corrector modified barrier approach [J].
de Sousa, V. A. ;
Baptista, E. C. ;
da Costa, G. R. M. .
ELECTRIC POWER SYSTEMS RESEARCH, 2009, 79 (05) :803-808