Alternating dual-wavelength second harmonic generation at 532 nm using a Y-branch distributed Bragg reflector diode laser

被引:0
作者
Mueller, Andre [1 ]
Sumpf, Bernd [1 ]
机构
[1] Ferdinand Braun Inst gGmbH, Leibniz Inst Hochstfrequenztech, Gustav Kirchhoff Str 4, D-12489 Berlin, Germany
来源
NONLINEAR FREQUENCY GENERATION AND CONVERSION: MATERIALS AND DEVICES XX | 2021年 / 11670卷
关键词
Second harmonic generation; Ridge-waveguide; Lithium niobate; Dual-wavelength; Diode laser; DBR lasers; DIFFERENCE; REJECTION;
D O I
10.1117/12.2578115
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Alternating dual-wavelength second harmonic generation at 532 nm using a 1064 nm Y-branch distributed Bragg reflector diode laser will be presented. The light source is based on single-pass frequency conversion in a periodically poled lithium niobate waveguide crystal with superimposed poling periods. All components, including the diode laser, optics for beam shaping and the nonlinear crystal, are mounted on a 5 x 25 mm(2) aluminum nitride micro-optical bench soldered on a 25 x 25 mm(2) conduction cooled package mount. Separated electrical contacts for the diode laser allow for alternating, wavelength stabilized dual-wavelength laser emission with spectral widths of 0.02 nm (0.2 cm(-1)). Heater elements implemented above the DBR gratings enable wavelength tuning, which is utilized for phase-matching at both wavelengths. At a heat sink temperature of 25 degrees C, optical output powers of 5.6 mW at 532.45 nm and 6.7 mW at 531.85 nm with a spectral width of 0.01 nm (0.35 cm(-1)) are obtained. The developed light source is suitable for demanding applications such as Raman spectroscopy and shifted excitation Raman difference spectroscopy.
引用
收藏
页数:7
相关论文
共 14 条
[1]  
Agrawal G P, 1993, SEMICONDUCTOR LASERS, P319
[2]   Y-branch coupled DFB-lasers based on high-order Bragg gratings for wavelength stabilization [J].
Fricke, J. ;
Klehr, A. ;
Brox, O. ;
John, W. ;
Ginolas, A. ;
Ressel, P. ;
Weixelbaum, L. ;
Erbert, G. .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2013, 28 (03)
[3]   5-W DBR Tapered Lasers Emitting at 1060 nm With a Narrow Spectral Linewidth and a Nearly Diffraction-Limited Beam Quality [J].
Hasler, K. -H. ;
Sumpf, B. ;
Adamiec, P. ;
Bugge, F. ;
Fricke, J. ;
Ressel, P. ;
Wenzel, H. ;
Erbert, G. ;
Traenkle, G. .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2008, 20 (17-20) :1648-1650
[4]   Miniaturized blue laser using second harmonic generation [J].
Kitaoka, Y ;
Yokoyama, T ;
Mizuuchi, K ;
Yamamoto, K .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2000, 39 (6A) :3416-3418
[5]   Dual-wavelength monolithic Y-branch distributed Bragg reflection diode laser at 671 nm suitable for shifted excitation Raman difference spectroscopy [J].
Maiwald, Martin ;
Fricke, Joerg ;
Ginolas, Arnim ;
Pohl, Johannes ;
Sumpf, Bernd ;
Erbert, Goetz ;
Traenkle, Guenther .
LASER & PHOTONICS REVIEWS, 2013, 7 (04) :L30-L33
[6]   Microsystem Light Source at 488 nm for Shifted Excitation Resonance Raman Difference Spectroscopy [J].
Maiwald, Martin ;
Schmidt, Heinar ;
Sumpf, Bernd ;
Guether, Reiner ;
Erbert, Goetz ;
Kronfeldt, Heinz-Detlef ;
Traenkle, Guenther .
APPLIED SPECTROSCOPY, 2009, 63 (11) :1283-1287
[7]  
McCreery R. L., 2000, RAMAN SPECTROSCOPY C, P76
[8]   107-mW low-noise green-light emission by frequency doubling of a reliable 1060-nm DFB semiconductor laser diode [J].
Nguyen, HK ;
Hu, MH ;
Nishiyama, N ;
Visovsky, NJ ;
Li, YB ;
Song, KC ;
Liu, XS ;
Gollier, J ;
Hughes, LC ;
Bhat, R ;
Zah, CE .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2006, 18 (5-8) :682-684
[9]  
Risk W. P., 2003, COMPACT BLUE GREEN L, P21
[10]   EFFECTIVE REJECTION OF FLUORESCENCE INTERFERENCE IN RAMAN-SPECTROSCOPY USING A SHIFTED EXCITATION DIFFERENCE TECHNIQUE [J].
SHREVE, AP ;
CHEREPY, NJ ;
MATHIES, RA .
APPLIED SPECTROSCOPY, 1992, 46 (04) :707-711