Structural basis of ligand recognition and self-activation of orphan GPR52

被引:110
作者
Lin, Xi [1 ,2 ,3 ,4 ]
Li, Mingyue [2 ,3 ,4 ]
Wang, Niandong [1 ,2 ,3 ,4 ]
Wu, Yiran [1 ]
Luo, Zhipu [5 ]
Guo, Shimeng [6 ]
Han, Gye-Won [7 ]
Li, Shaobai [8 ,9 ]
Yue, Yang [1 ]
Wei, Xiaohu [2 ,3 ,4 ]
Xie, Xin [2 ]
Chen, Yong [2 ,3 ,4 ]
Zhao, Suwen [1 ,2 ]
Wu, Jian [8 ,9 ,10 ]
Lei, Ming [8 ,9 ,11 ]
Xu, Fei [1 ,2 ,12 ]
机构
[1] ShanghaiTech Univ, iHuman Inst, Shanghai, Peoples R China
[2] ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Biochem & Cell Biol, Shanghai, Peoples R China
[4] Univ Chinese Acad Sci, Beijing, Peoples R China
[5] Soochow Univ, Sch Biol & Basic Med Sci, Inst Mol Enzymol, Suzhou, Peoples R China
[6] Chinese Acad Sci, Shanghai Inst Mat Med, Natl Ctr Drug Screening, CAS Key Lab Receptor Res, Shanghai, Peoples R China
[7] Univ Southern Calif, Bridge Inst, Dept Biol Sci, Los Angeles, CA USA
[8] Shanghai Jiao Tong Univ, Peoples Hosp 9, Sch Med, Shanghai, Peoples R China
[9] Shanghai Inst Precis Med, Shanghai, Peoples R China
[10] Shanghai Key Lab Translat Med Ear & Nose Dis, Shanghai, Peoples R China
[11] Shanghai Jiao Tong Univ, Sch Med, Chinese Minist Educ, Key Lab Cell Differentiat & Apoptosis, Shanghai, Peoples R China
[12] Chinese Acad Sci, Ctr Excellence Mol Cell Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
CRYO-EM STRUCTURE; PROTEIN-COUPLED RECEPTORS; BETA(2)-ADRENERGIC RECEPTOR; CRYSTAL-STRUCTURE; IONIC LOCK; AGONIST; DISCOVERY; CRYSTALLIZATION; STABILIZATION; MUTAGENESIS;
D O I
10.1038/s41586-020-2019-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Structures of the orphan G-protein-coupled receptor GPR52 in ligand-free, G-protein-coupled and ligand-bound states reveal that extracellular loop 2 occupies the orthosteric binding pocket and functions as a built-in agonist to activate the receptor. GPR52 is a class-A orphan G-protein-coupled receptor that is highly expressed in the brain and represents a promising therapeutic target for the treatment of Huntington's disease and several psychiatric disorders(1,2). Pathological malfunction of GPR52 signalling occurs primarily through the heterotrimeric G(s) protein(2), but it is unclear how GPR52 and G(s) couple for signal transduction and whether a native ligand or other activating input is required. Here we present the high-resolution structures of human GPR52 in three states: a ligand-free state, a G(s)-coupled self-activation state and a potential allosteric ligand-bound state. Together, our structures reveal that extracellular loop 2 occupies the orthosteric binding pocket and operates as a built-in agonist, conferring an intrinsically high level of basal activity to GPR52(3). A fully active state is achieved when G(s) is coupled to GPR52 in the absence of an external agonist. The receptor also features a side pocket for ligand binding. These insights into the structure and function of GPR52 could improve our understanding of other self-activated GPCRs, enable the identification of endogenous and tool ligands, and guide drug discovery efforts that target GPR52.
引用
收藏
页码:152 / +
页数:19
相关论文
共 62 条
  • [1] PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution
    Adams, Paul D.
    Afonine, Pavel V.
    Bunkoczi, Gabor
    Chen, Vincent B.
    Davis, Ian W.
    Echols, Nathaniel
    Headd, Jeffrey J.
    Hung, Li-Wei
    Kapral, Gary J.
    Grosse-Kunstleve, Ralf W.
    McCoy, Airlie J.
    Moriarty, Nigel W.
    Oeffner, Robert
    Read, Randy J.
    Richardson, David C.
    Richardson, Jane S.
    Terwilliger, Thomas C.
    Zwart, Peter H.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 : 213 - 221
  • [2] Orphan G protein-coupled receptors: The role in CNS disorders
    Alavi, Mohaddeseh Sadat
    Shamsizadeh, Ali
    Azhdari-Zarmehri, Hassan
    Roohbakhsh, Ali
    [J]. BIOMEDICINE & PHARMACOTHERAPY, 2018, 98 : 222 - 232
  • [3] [Anonymous], 2015, PyMOL MolecularGraphics System
  • [4] Emerging structural biology of lipid G protein-coupled receptors
    Audet, Martin
    Stevens, Raymond C.
    [J]. PROTEIN SCIENCE, 2019, 28 (02) : 292 - 304
  • [5] Ballesteros J. A., 1995, METH NEUROSCI, V25, P366, DOI [10.1016/S1043-9471(05)80049-7, DOI 10.1016/S1043-9471(05)80049-7]
  • [6] Activation of the β2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6
    Ballesteros, JA
    Jensen, AD
    Liapakis, G
    Rasmussen, SGF
    Shi, L
    Gether, U
    Javitch, JA
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (31) : 29171 - 29177
  • [7] One number does not fit all: Mapping local variations in resolution in cryo-EM reconstructions
    Cardone, Giovanni
    Heymann, J. Bernard
    Steven, Alasdair C.
    [J]. JOURNAL OF STRUCTURAL BIOLOGY, 2013, 184 (02) : 226 - 236
  • [8] Engineering a minimal G protein to facilitate crystallisation of G protein-coupled receptors in their active conformation
    Carpenter, Byron
    Tate, Christopher G.
    [J]. PROTEIN ENGINEERING DESIGN & SELECTION, 2016, 29 (12) : 583 - 593
  • [9] MolProbity: all-atom structure validation for macromolecular crystallography
    Chen, Vincent B.
    Arendall, W. Bryan, III
    Headd, Jeffrey J.
    Keedy, Daniel A.
    Immormino, Robert M.
    Kapral, Gary J.
    Murray, Laura W.
    Richardson, Jane S.
    Richardson, David C.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 : 12 - 21
  • [10] Rastering strategy for screening and centring of microcrystal samples of human membrane proteins with a sub-10 μm size X-ray synchrotron beam
    Cherezov, Vadim
    Hanson, Michael A.
    Griffith, Mark T.
    Hilgart, Mark C.
    Sanishvili, Ruslan
    Nagarajan, Venugopalan
    Stepanov, Sergey
    Fischetti, Robert F.
    Kuhn, Peter
    Stevens, Raymond C.
    [J]. JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2009, 6 : S587 - S597