Shaping the Contact between Li Metal Anode and Solid-State Electrolytes

被引:60
作者
Duan, Jian [1 ]
Huang, Liqiang [1 ]
Wang, Tengrui [1 ]
Huang, Yimeng [2 ]
Fu, Haoyu [1 ]
Wu, Wangyan [1 ]
Luo, Wei [1 ]
Huang, Yunhui [1 ]
机构
[1] Tongji Univ, Sch Mat Sci & Engn, Inst New Energy Vehicles, Shanghai 201804, Peoples R China
[2] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
interfacial resistance; lithiophilic patterns; Li metal anodes; solid-state batteries; solid-state electrolytes; LITHIUM; INTERFACE; BATTERIES; CHALLENGES; ORIGIN;
D O I
10.1002/adfm.201908701
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Scientific and technological interest in solid-state Li metal batteries (SSLMBs) arises from their excellent safety and promising high energy density. However, the practical application of SSLMBs is hindered by poor contact between the Li metal anode (LMA) and solid-state electrolytes (SSEs). To circumvent this limitation, a pattern-guided approach that shapes the LMA/SSE contact is disclosed to offer fast Li ion conduction in the interface. A thermally-treated copper foam is used as the lithophilic pattern to confine and guide Li for forming a tight contact with garnet-type SSE. The contact can be easily manipulated according to the shape of lithiophilic pattern, facilitating cell assembly. The resulting Li|patterned garnet|Li symmetric cell exhibits an interfacial resistance of 9.8 omega cm(2), which is dramatically lower than that of 998 omega cm(2) for Li|pristine garnet|Li symmetric cell. Being used in Li-sulfur batteries, the patterned garnet effectively eliminates the polysulfide shuttle and enables stable cycling performance, showing a low capacity decay of 0.035% per cycle over 1000 cycles. The fundamental contact process of metallic anodes/SSEs is carefully investigated. This contact strategy provides a new design concept to improve the interface wettability via a lithiophilic pattern for a variety of SSEs that cannot wet with metallic anodes.
引用
收藏
页数:7
相关论文
共 53 条
[1]   Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12" [J].
Buschmann, Henrik ;
Doelle, Janis ;
Berendts, Stefan ;
Kuhn, Alexander ;
Bottke, Patrick ;
Wilkening, Martin ;
Heitjans, Paul ;
Senyshyn, Anatoliy ;
Ehrenberg, Helmut ;
Lotnyk, Andriy ;
Duppel, Viola ;
Kienle, Lorenz ;
Janek, Juergen .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (43) :19378-19392
[2]   Lignin-Derived Holey, Layered, and Thermally Conductive 3D Scaffold for Lithium Dendrite Suppression [J].
Cao, Doxion ;
Zhang, Qing ;
Hafez, Ahmed M. ;
Jiao, Yucong ;
Ma, Yi ;
Li, Hongyan ;
Cheng, Zheng ;
Niu, Chunming ;
Zhu, Hongli .
SMALL METHODS, 2019, 3 (05)
[3]   The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes [J].
Cheng, Lei ;
Crumlin, Ethan J. ;
Chen, Wei ;
Qiao, Ruimin ;
Hou, Huaming ;
Lux, Simon Franz ;
Zorba, Vassilia ;
Russo, Richard ;
Kostecki, Robert ;
Liu, Zhi ;
Persson, Kristin ;
Yang, Wanli ;
Cabana, Jordi ;
Richardson, Thomas ;
Chen, Guoying ;
Doeff, Marca .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (34) :18294-18300
[4]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[5]   Interface Engineering for Garnet-Based Solid-State Lithium-Metal Batteries: Materials, Structures, and Characterization [J].
Dai, Jiaqi ;
Yang, Chunpeng ;
Wang, Chengwei ;
Pastel, Glenn ;
Hu, Liangbing .
ADVANCED MATERIALS, 2018, 30 (48)
[6]   Hydrophilic and superhydrophilic surfaces and materials [J].
Drelich, Jaroslaw ;
Chibowski, Emil ;
Meng, Dennis Desheng ;
Terpilowski, Konrad .
SOFT MATTER, 2011, 7 (21) :9804-9828
[7]   Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: challenges, materials, construction, and characterization [J].
Du, Mingjie ;
Liao, Kaiming ;
Lu, Qian ;
Shao, Zongping .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (06) :1780-1804
[8]   In situ formation of a bifunctional interlayer enabled by a conversion reaction to initiatively prevent lithium dendrites in a garnet solid electrolyte [J].
Fu, Jiamin ;
Yu, Pengfei ;
Zhang, Nian ;
Ren, GuoXi ;
Zheng, Shun ;
Huang, Wencheng ;
Long, Xinghui ;
Li, Hong ;
Liu, Xiaosong .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (04) :1404-1412
[9]   Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries [J].
Gao, Zhonghui ;
Sun, Huabin ;
Fu, Lin ;
Ye, Fangliang ;
Zhang, Yi ;
Luo, Wei ;
Huang, Yunhui .
ADVANCED MATERIALS, 2018, 30 (17)
[10]   The Li-Ion Rechargeable Battery: A Perspective [J].
Goodenough, John B. ;
Park, Kyu-Sung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1167-1176