Methods for genetic transformation of filamentous fungi

被引:137
作者
Li, Dandan [1 ,3 ]
Tang, Yu [4 ]
Lin, Jun [1 ,2 ,3 ]
Cai, Weiwen [1 ,3 ]
机构
[1] Fuzhou Univ, Inst Apply Genom, 2 Xueyuan Rd, Fuzhou 350108, Fujian, Peoples R China
[2] Fujian Med Univ, Sch Basic Med Sci, 1 Xuefubei Rd, Fuzhou 350122, Fujian, Peoples R China
[3] Fuzhou Univ, Coll Biol Sci & Engn, 2 Xueyuan Rd, Fuzhou 350108, Fujian, Peoples R China
[4] Triplex Int Biosci China Co LTD, Xiamen 361100, Peoples R China
基金
中国国家自然科学基金;
关键词
Filamentous fungi; Protoplast-mediated transformation; Agrobacterium-mediated transformation; Electroporation; Biolistic method; Shock-wave-mediated transformation; AGROBACTERIUM-MEDIATED TRANSFORMATION; HIGH-EFFICIENCY TRANSFORMATION; ASPERGILLUS-NIDULANS; TRICHODERMA-REESEI; SHOCK-WAVES; ELECTROPORATION; TUMEFACIENS; PLASMID; DNA; SYSTEM;
D O I
10.1186/s12934-017-0785-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Filamentous fungi have been of great interest because of their excellent ability as cell factories to manufacture useful products for human beings. The development of genetic transformation techniques is a precondition that enables scientists to target and modify genes efficiently and may reveal the function of target genes. The method to deliver foreign nucleic acid into cells is the sticking point for fungal genome modification. Up to date, there are some general methods of genetic transformation for fungi, including protoplast-mediated transformation, Agrobacterium-mediated transformation, electroporation, biolistic method and shock-wave-mediated transformation. This article reviews basic protocols and principles of these transformation methods, as well as their advantages and disadvantages.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Optimization of the Transformation Protocol for Increased Efficiency of Genetic Transformation in Hevea brasiliensis
    Udayabhanu, Jinu
    Huang, Tiandai
    Xin, Shichao
    Cheng, Jing
    Hua, Yuwei
    Huang, Huasun
    PLANTS-BASEL, 2022, 11 (08):
  • [42] Highly Efficient Genetic Transformation Methods for the Marine Oleaginous Diatom Fistulifera solaris
    Naser, Insaf
    Yabu, Yusuke
    Maeda, Yoshiaki
    Tanaka, Tsuyoshi
    MARINE BIOTECHNOLOGY, 2023, 25 (05) : 657 - 665
  • [43] Metabolic pathway gene clusters in filamentous fungi
    Keller, NP
    Hohn, TM
    FUNGAL GENETICS AND BIOLOGY, 1997, 21 (01) : 17 - 29
  • [44] Modular Synthetic Biology Toolkit for Filamentous Fungi
    Mozsik, Laszlo
    Pohl, Carsten
    Meyer, Vera
    Bovenberg, Roel A. L.
    Nygard, Yvonne
    Driessen, Arnold J. M.
    ACS SYNTHETIC BIOLOGY, 2021, 10 (11): : 2850 - 2861
  • [45] The Golgi apparatus: insights from filamentous fungi
    Pantazopoulou, Areti
    MYCOLOGIA, 2016, 108 (03) : 603 - 622
  • [46] STRESS MANAGEMENT - FILAMENTOUS FUNGI AS EXEMPLARY SURVIVORS
    MARKHAM, P
    FEMS MICROBIOLOGY LETTERS, 1992, 100 (1-3) : 379 - 385
  • [47] Pretreatment of lignocellulosic biogas substrates by filamentous fungi
    Kovacs, Etelka
    Szucs, Csilla
    Farkas, Attila
    Szuhaj, Mark
    Maroti, Gergely
    Bagi, Zoltan
    Rakhely, Gabor
    Kovacs, Kornel L.
    JOURNAL OF BIOTECHNOLOGY, 2022, 360 : 160 - 170
  • [48] Applications of CRISPR/Cas9 in the Synthesis of Secondary Metabolites in Filamentous Fungi
    Jiang, Chunmiao
    Lv, Gongbo
    Tu, Yayi
    Cheng, Xiaojie
    Duan, Yitian
    Zeng, Bin
    He, Bin
    FRONTIERS IN MICROBIOLOGY, 2021, 12
  • [49] Genetic transformation of a hepatoprotective plant, Phyllanthus amarus
    Banerjee, Anindita
    Chattopadhyay, Sharmila
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-PLANT, 2009, 45 (01) : 57 - 64
  • [50] A simplified in-planta genetic transformation in soybean
    Mangena, Phetole
    RESEARCH JOURNAL OF BIOTECHNOLOGY, 2019, 14 (09): : 117 - 125