Steep-Slope Transistors Based on Chiral Graphene Nanoribbons With Intrinsic Cold Source

被引:11
作者
Ye, Shizhuo [1 ]
Wang, Zifeng [1 ]
Wang, Hao [1 ]
Huang, Qijun [1 ]
He, Jin [1 ]
Chang, Sheng [1 ]
机构
[1] Wuhan Univ, Sch Phys & Technol, Dept Micro Elect, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Field effect transistors; Logic gates; Graphene; Switches; Nanoribbons; Tunneling; Electric potential; Density of states (DOS); graphene nanoribbon; nonequilibrium Green's function (NEGF); subthreshold swing (SS); STRATEGY;
D O I
10.1109/TED.2021.3087459
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Steep-slope switching is effective to reduce the required energy for switching, however, at least 60 mV of gate voltage is required to modulate the current by an order of magnitude at room temperature. In this article, a numerical study of cold-source transistors based on chiral graphene nanoribbons (CGNRs) is presented. In cold-source transistors, the high-energy electrons are filtered out to break the room-temperature limitation, which can be realized by using CGNRs with narrow density of states (DOS) distribution. Our numerical results indicate that CGNR transistors can achieve sub-60 mv/decade subthreshold swing and similar ON-state current to conventional transistor. Moreover, the effect of the DOS distribution of CGNRs on the transport characteristics is investigated. This work provides a potential option for low-power electron devices and provides guidance for the design of cold-source transistors.
引用
收藏
页码:4123 / 4128
页数:6
相关论文
共 28 条
[1]   Subthreshold-swing physics of tunnel field-effect transistors [J].
Cao, Wei ;
Sarkar, Deblina ;
Khatami, Yasin ;
Kang, Jiahao ;
Banerjee, Kaustav .
AIP ADVANCES, 2014, 4 (06)
[2]   100-nm n/p-channel I-MOS using a novel self-aligned structure [J].
Choi, WY ;
Song, JY ;
Lee, JD ;
Park, YJ ;
Park, BG .
IEEE ELECTRON DEVICE LETTERS, 2005, 26 (04) :261-263
[3]   Substrate-Independent Growth of Atomically Precise Chiral Graphene Nanoribbons [J].
de Oteyza, Dimas G. ;
Garcia-Lekue, Aran ;
Vilas-Varela, Manuel ;
Merino-Diez, Nestor ;
Carbonell-Sanroma, Eduard ;
Corso, Martina ;
Vasseur, Guillaume ;
Rogero, Celia ;
Guitian, Enrique ;
Ignacio Pascual, Jose ;
Enrique Ortega, J. ;
Wakayama, Yutaka ;
Pena, Diego .
ACS NANO, 2016, 10 (09) :9000-9008
[4]   Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties [J].
Elstner, M ;
Porezag, D ;
Jungnickel, G ;
Elsner, J ;
Haugk, M ;
Frauenheim, T ;
Suhai, S ;
Seifert, G .
PHYSICAL REVIEW B, 1998, 58 (11) :7260-7268
[5]   Simulation of graphene nanoribbon field-effect transistors [J].
Fiori, Gianluca ;
Iannaccone, Giuseppe .
IEEE ELECTRON DEVICE LETTERS, 2007, 28 (08) :760-762
[6]   Bottom-Up Graphene-Nanoribbon Fabrication Reveals Chiral Edges and Enantioselectivity [J].
Han, Patrick ;
Akagi, Kazuto ;
Canova, Filippo Federici ;
Mutoh, Hirotaka ;
Shiraki, Susumu ;
Iwaya, Katsuya ;
Weiss, Paul S. ;
Asao, Naoki ;
Hitosugi, Taro .
ACS NANO, 2014, 8 (09) :9181-9187
[7]   Tunnel field-effect transistors as energy-efficient electronic switches [J].
Ionescu, Adrian M. ;
Riel, Heike .
NATURE, 2011, 479 (7373) :329-337
[8]   Nanoelectromechanical switch with low voltage drive [J].
Jang, J. E. ;
Cha, S. N. ;
Choi, Y. ;
Butler, T. P. ;
Kang, D. J. ;
Hasko, D. G. ;
Jung, J. E. ;
Jin, Y. W. ;
Kim, J. M. ;
Amaratunga, G. A. J. .
APPLIED PHYSICS LETTERS, 2008, 93 (11)
[9]   Negative Capacitance Field Effect Transistor With Hysteresis-Free Sub-60-mV/Decade Switching [J].
Jo, Jaesung ;
Shin, Changhwan .
IEEE ELECTRON DEVICE LETTERS, 2016, 37 (03) :245-248
[10]   Review-Silicene: From Material to Device Applications [J].
Kharadi, Mubashir A. ;
Malik, Gul Faroz A. ;
Khanday, Farooq A. ;
Shah, Khurshed A. ;
Mittal, Sparsh ;
Kaushik, Brajesh Kumar .
ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2020, 9 (11)