HEVC Fast Intra Coding Based CTU Depth Range Prediction

被引:0
作者
Feng, Zeqi [1 ,2 ,3 ,4 ]
Liu, Pengyu [1 ,2 ,3 ,4 ]
Jia, Kebin [1 ,2 ,3 ,4 ]
Duan, Kun [1 ,2 ,3 ,4 ]
机构
[1] Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
[2] Beijing Lab Adv Informat Networks, Beijing 100124, Peoples R China
[3] Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China
[4] Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
来源
2018 IEEE 3RD INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC) | 2018年
基金
中国博士后科学基金; 中国国家自然科学基金; 北京市自然科学基金;
关键词
CTU; HEVC; intra coding; texture; DECISION ALGORITHM; SIZE DECISION; STANDARD;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Coding tree unit (CTU) partition technique provides excellent compression performance for HEVC at the expense of increased coding complexity. Therefore, a fast intra coding algorithm based CTU depth range prediction is proposed to reduce the complexity of HEVC intra coding herein. First, simple CTUs and complex CTUs are defined in line with their texture complexity, which are limited to different depth ranges. Then, the convolutional neural network architecture for HEVC intra depth range (HIDR-CNN) decision-making is proposed. It is used for CTU classification and depth range restriction. Last, the optimal CTU partition is achieved by recursive rate distortion (RD) cost calculation in the depth range. Experimental results show that the proposed algorithm can achieve average 27.54% encoding time reduction with negligible RD loss compared with HM 16.9. The proposed algorithm devotes to promote popularization of HEVC in real-time environments.
引用
收藏
页码:551 / 555
页数:5
相关论文
共 15 条
  • [1] A fast CU depth decision mechanism for HEVC
    Cen, Yue-Feng
    Wang, Wan-Liang
    Yao, Xin-Wei
    [J]. INFORMATION PROCESSING LETTERS, 2015, 115 (09) : 719 - 724
  • [2] Convolutional Neural Network Committees For Handwritten Character Classification
    Ciresan, Dan Claudiu
    Meier, Ueli
    Gambardella, Luca Maria
    Schmidhuber, Juergen
    [J]. 11TH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR 2011), 2011, : 1135 - 1139
  • [3] Quadtree Degeneration for HEVC
    Gao, Yuan
    Liu, Pengyu
    Wu, Yueying
    Jia, Kebin
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2016, 18 (12) : 2321 - 2330
  • [4] Gisle Bjontegaard, 2001, VCEGM33
  • [5] Jia Yangqing, 2016, TRAINING LENET MNIST
  • [6] Block Partitioning Structure in the HEVC Standard
    Kim, Il-Koo
    Min, Junghye
    Lee, Tammy
    Han, Woo-Jin
    Park, JeongHoon
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2012, 22 (12) : 1697 - 1706
  • [7] Kim J, 2013, IEEE ICCE, P637, DOI 10.1109/ICCE.2013.6487050
  • [8] Laude T., 2016, IEEE PICT COD S PCS, P1
  • [9] Li B, 2012, JCTVC J0236 RL 10 JC
  • [10] Liu ZY, 2016, IEEE INT SYMP CIRC S, P2270, DOI 10.1109/ISCAS.2016.7539036