Iterative boundary element method for crack analysis of two-dimensional piezoelectric semiconductor

被引:18
作者
Zhang, QiaoYun [1 ]
Fan, CuiYing [2 ,3 ]
Xu, GuangTao [2 ,3 ]
Zhao, MingHao [1 ,2 ,3 ]
机构
[1] Zhengzhou Univ, Sch Mech & Engn Sci, Zhengzhou 450001, Henan, Peoples R China
[2] Zhengzhou Univ, Henan Key Engn Lab Antifatigue Mfg Technol, Zhengzhou 450001, Henan, Peoples R China
[3] Zhengzhou Univ, Sch Mech Engn, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Piezoelectric semiconductors; Iterative boundary element method; Elliptical hole; Crack; Intensity factors; FUNDAMENTAL-SOLUTIONS; FRACTURE-ANALYSIS; FIELD;
D O I
10.1016/j.enganabound.2017.07.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Based on the well-developed boundary element methods for piezoelectric media and conductors, we present an iterative boundary element method to solve the boundary value problems in two-dimensional piezoelectric semiconductors (PSCs). The proposed method is verified by analyzing a piezoelectric semiconductor plate under multi-field load. Two typically important boundary value problems, a hole and a crack, are studied in PSC plates by using the proposed method. The stress concentration near the edge of an elliptical hole in a finite piezoelectric semiconductor plate is studied by using the single-domain boundary element method. Also, by using the sub domain boundary element method, we analyzed how the mechanical load, electrical load, electric current density, and initial electron density affected the stress, electric displacement and electric current intensity factors near the crack tip. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:87 / 95
页数:9
相关论文
共 30 条
  • [1] Brebbia CA., 1978, BOUNDARY ELEMENT MET
  • [2] Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures
    Chichibu, SF
    Abare, AC
    Minsky, MS
    Keller, S
    Fleischer, SB
    Bowers, JE
    Hu, E
    Mishra, UK
    Coldren, LA
    DenBaars, SP
    Sota, T
    [J]. APPLIED PHYSICS LETTERS, 1998, 73 (14) : 2006 - 2008
  • [3] Fundamental solutions for plane problem of piezoelectric materials
    Ding, HJ
    Wang, GQ
    Chen, WQ
    [J]. SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES, 1997, 40 (03): : 331 - 336
  • [4] Ding HJ, 1997, INT J SOLIDS STRUCT, V34, P3041, DOI 10.1016/S0020-7683(96)00201-6
  • [5] Ding HJ, 1998, COMPUT METHOD APPL M, V158, P65, DOI 10.1016/S0045-7825(97)00227-2
  • [6] Piezoelectric-conductor iterative method for analysis of cracks in piezoelectric semiconductors via the finite element method
    Fan, CuiYing
    Yan, Yang
    Xu, GuangTao
    Zhao, MingHao
    [J]. ENGINEERING FRACTURE MECHANICS, 2016, 165 : 183 - 196
  • [7] Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics
    Gao, Yifan
    Wang, Zhong Lin
    [J]. NANO LETTERS, 2007, 7 (08) : 2499 - 2505
  • [8] Anisotropic and piezoelectric materials fracture analysis by BEM
    García-Sánchez, F
    Sáez, SB
    Domínguez, J
    [J]. COMPUTERS & STRUCTURES, 2005, 83 (10-11) : 804 - 820
  • [9] MODULATED PIEZOREFLECTANCE IN SEMICONDUCTORS
    GAVINI, A
    CARDONA, M
    [J]. PHYSICAL REVIEW B-SOLID STATE, 1970, 1 (02): : 672 - +
  • [10] Shear-horizontal surface waves in a half-space of piezoelectric semiconductors
    Gu, Chunlong
    Jin, Feng
    [J]. PHILOSOPHICAL MAGAZINE LETTERS, 2015, 95 (02) : 92 - 100