A Semantic Simultaneous Localization And Mapping System Based On DeeplabV3+

被引:0
作者
Jia, Yongxing [1 ]
Li, Mingcan [1 ]
Yu, Jing [1 ]
Xu, Fenghui [1 ]
机构
[1] Army Engn Univ PLA, Coll Commun Engn, Nanjing, Peoples R China
来源
THIRTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2021) | 2022年 / 12083卷
关键词
Semantics; SLAM; OctoMap; Bayesian Fusion;
D O I
10.1117/12.2623143
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
There are many deep based semantic segmentation algorithms to strengthen robot perception. However, most existing methods hardly emphasis on the apply of deep neural networks. Therefore, this paper proposes a new Semantic Simultaneous Localization and Mapping system based on DeeplabV3+. The system can accurately reconstruct the 3D dense model of observed environment. Firstly, the Deeplabv3+ semantic extractor with the best visual effect is trained supervisedly, and the robot motion estimation is completed by the ORBSLAM2 framework. Subsequently, the semantic images, the depth images and the pose transformation matrix are sent to an efficient mapping module to fuse an accurate semantic model. Experimental results show that the constructed map can reflect the real distribution of objects in the scene, and the system perform well in the standard TUM datasets. The proposed method with loose coupling of novel segmentation networks can efficiently reduce the complexity of semantic SLAM system. Moreover, this method can improve the performance in the evolution of semantic segmentation network and SLAM framework.
引用
收藏
页数:9
相关论文
共 16 条
[1]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[2]  
Chen LC, 2014, ARXIV PREPRINT ARXIV, P40
[3]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[4]  
Chen LB, 2017, IEEE INT SYMP NANO, P1, DOI 10.1109/NANOARCH.2017.8053709
[5]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[6]   MonoSLAM: Real-time single camera SLAM [J].
Davison, Andrew J. ;
Reid, Ian D. ;
Molton, Nicholas D. ;
Stasse, Olivier .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (06) :1052-1067
[7]   3-D Mapping With an RGB-D Camera [J].
Endres, Felix ;
Hess, Juergen ;
Sturm, Juergen ;
Cremers, Daniel ;
Burgard, Wolfram .
IEEE TRANSACTIONS ON ROBOTICS, 2014, 30 (01) :177-187
[8]   The PASCAL Visual Object Classes Challenge: A Retrospective [J].
Everingham, Mark ;
Eslami, S. M. Ali ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 111 (01) :98-136
[9]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[10]   OctoMap: an efficient probabilistic 3D mapping framework based on octrees [J].
Hornung, Armin ;
Wurm, Kai M. ;
Bennewitz, Maren ;
Stachniss, Cyrill ;
Burgard, Wolfram .
AUTONOMOUS ROBOTS, 2013, 34 (03) :189-206