A SECOND ORDER ENERGY STABLE SCHEME FOR THE CAHN-HILLIARD-HELE-SHAW EQUATIONS

被引:78
作者
Chen, Wenbin [1 ]
Feng, Wenqiang [2 ]
Liu, Yuan [1 ]
Wang, Cheng [3 ]
Wise, Steven M. [2 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Univ Tennessee, Math Dept, Knoxville, TN 37996 USA
[3] Univ Massachusetts, Math Dept, N Dartmouth, MA 02747 USA
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2019年 / 24卷 / 01期
关键词
Cahn-Hilliard-Hele-Shaw; Darcy's law; convex splitting; finite difference method; unconditional energy stability; nonlinear multigrid; FINITE-DIFFERENCE SCHEME; FIELD CRYSTAL EQUATION; CONVEX SPLITTING SCHEMES; NONLINEAR TUMOR-GROWTH; THIN-FILM EPITAXY; ELEMENT-METHOD; CONVERGENCE ANALYSIS; MODELING PINCHOFF; ERROR ANALYSIS; STOKES SYSTEM;
D O I
10.3934/dcdsb.2018090
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a second-order-in-time finite difference scheme for the Cahn-Hilliard-Hele-Shaw equations. This numerical method is uniquely solvable and unconditionally energy stable. At each time step, this scheme leads to a system of nonlinear equations that can be efficiently solved by a nonlinear multigrid solver. Owing to the energy stability, we derive an l(2)(0; T; H-h(3)) stability of the numerical scheme. To overcome the difficulty associated with the convection term del . (phi u), we perform an l(infinity)(0; T; H-h(1)) error estimate instead of the classical l(infinity)(0; T; l(2)) one to obtain the optimal rate convergence analysis. In addition, various numerical simulations are carried out, which demonstrate the accuracy and efficiency of the proposed numerical scheme.
引用
收藏
页码:149 / 182
页数:34
相关论文
共 37 条
[1]   CONVERGENCE ANALYSIS OF A SECOND ORDER CONVEX SPLITTING SCHEME FOR THE MODIFIED PHASE FIELD CRYSTAL EQUATION [J].
Baskaran, A. ;
Lowengrub, J. S. ;
Wang, C. ;
Wise, S. M. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (05) :2851-2873
[2]   Energy stable multigrid method for local and non-local hydrodynamic models for freezing [J].
Baskaran, Arvind ;
Guan, Zhen ;
Lowengrub, John .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 299 :22-56
[3]   Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation [J].
Baskaran, Arvind ;
Hu, Zhengzheng ;
Lowengrub, John S. ;
Wang, Cheng ;
Wise, Steven M. ;
Zhou, Peng .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 250 :270-292
[4]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[5]   CONVERGENCE ANALYSIS OF A FULLY DISCRETE FINITE DIFFERENCE SCHEME FOR THE CAHN-HILLIARD-HELE-SHAW EQUATION [J].
Chen, Wenbin ;
Liu, Yuan ;
Wang, Cheng ;
Wise, Steven M. .
MATHEMATICS OF COMPUTATION, 2016, 85 (301) :2231-2257
[6]   An Efficient, Energy Stable Scheme for the Cahn-Hilliard-Brinkman System [J].
Collins, Craig ;
Shen, Jie ;
Wise, Steven M. .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 13 (04) :929-957
[7]   Convergence analysis and error estimates for a second order accurate finite element method for the Cahn-Hilliard-Navier-Stokes system [J].
Diegel, Amanda E. ;
Wang, Cheng ;
Wang, Xiaoming ;
Wise, Steven M. .
NUMERISCHE MATHEMATIK, 2017, 137 (03) :495-534
[8]   Stability and convergence of a second-order mixed finite element method for the Cahn-Hilliard equation [J].
Diegel, Amanda E. ;
Wang, Cheng ;
Wise, Steven M. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (04) :1867-1897
[9]   ANALYSIS OF A MIXED FINITE ELEMENT METHOD FOR A CAHN-HILLIARD-DARCY-STOKES SYSTEM [J].
Diegel, Amanda E. ;
Feng, Xiaobing H. ;
Wise, Steven M. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (01) :127-152
[10]  
E WN, 2002, MATH COMPUT, V71, P27