Photon number-resolved detection with sequentially connected nanowires

被引:18
作者
Bell, M.
Antipov, A. [1 ]
Karasik, B.
Sergeev, A.
Mitin, V.
Verevkin, A.
机构
[1] SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA
[2] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
关键词
impedance; photon number resolving; sequentially connected nanowires; single photon detector; superconducting;
D O I
10.1109/TASC.2007.898616
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sequentially connected superconducting nanowires, such as nanopatterned meanders, are very promising candidates for single-photon detectors capable to resolve a number of photons in the pulse. In such devices, the Photon Number-Resolved (PNR) mode is possible due to independent detection of electromagnetic quanta by different regions of the meander. Every photon creates a resistive region in the superconductive meander and the total resistance is expected to be proportional to the number of photons absorbed. While the PNR mode can be realized with available single-photon detectors based on NbN nanowires, up to now it has not been observed experimentally. Here we show that the PNR mode in NbN requires the proper impedance matching between readout circuitry and nanowire-based detector. We discuss possible design of the readout circuitry for PNR detection. Results of modeling show that a high impedance amplifier placed in close proximity to the superconducting nanostructure can provide effective readout for the NbN nanowire-based detector operating in PNR mode.
引用
收藏
页码:289 / 292
页数:4
相关论文
共 16 条
[1]   Limitations on practical quantum cryptography [J].
Brassard, G ;
Lütkenhaus, N ;
Mor, T ;
Sanders, BC .
PHYSICAL REVIEW LETTERS, 2000, 85 (06) :1330-1333
[2]   Analysis of astronomical data from optical superconducting tunnel junctions [J].
de Bruijne, JHJ ;
Reynolds, AP ;
Perryman, MAC ;
Favata, F ;
Peacock, A .
OPTICAL ENGINEERING, 2002, 41 (06) :1158-1169
[3]   Picosecond superconducting single-photon optical detector [J].
Gol'tsman, GN ;
Okunev, O ;
Chulkova, G ;
Lipatov, A ;
Semenov, A ;
Smirnov, K ;
Voronov, B ;
Dzardanov, A ;
Williams, C ;
Sobolewski, R .
APPLIED PHYSICS LETTERS, 2001, 79 (06) :705-707
[4]   Inductance estimation for complicated superconducting thin film structures with a finite segment method [J].
Guan, BR ;
Wengler, MJ ;
Rott, P ;
Feldman, MJ .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1997, 7 (02) :2776-2779
[5]   Low-frequency phase locking in high-inductance superconducting nanowires [J].
Hadfield, RH ;
Miller, AJ ;
Nam, SW ;
Kautz, RL ;
Schwall, RE .
APPLIED PHYSICS LETTERS, 2005, 87 (20) :1-3
[6]   Infrared hot-electron NbN superconducting photodetectors for imaging applications [J].
Il'in, KS ;
Verevkin, AA ;
Gol'tsman, GN ;
Sobolewski, R .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 1999, 12 (11) :755-758
[7]   A scheme for efficient quantum computation with linear optics [J].
Knill, E ;
Laflamme, R ;
Milburn, GJ .
NATURE, 2001, 409 (6816) :46-52
[8]  
KOK P, LINEAR OPTICAL QUANT
[9]   Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors [J].
Korneev, A ;
Kouminov, P ;
Matvienko, V ;
Chulkova, G ;
Smirnov, K ;
Voronov, B ;
Gol'tsman, GN ;
Currie, M ;
Lo, W ;
Wilsher, K ;
Zhang, J ;
Slysz, W ;
Pearlman, A ;
Verevkin, A ;
Sobolewski, R .
APPLIED PHYSICS LETTERS, 2004, 84 (26) :5338-5340
[10]   RSFQ Logic/Memory Family: A New Josephson-Junction Technology for Sub-Terahertz-Clock-Frequency Digital Systems [J].
Likharev, K. K. ;
Semenov, V. K. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1991, 1 (01) :3-28