Periodic solutions for Hamiltonian systems without Ambrosetti-Rabinowitz condition and spectrum 0

被引:35
作者
Chen, Guanwei [1 ]
Ma, Shiwang
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Ground state; Superquadratic; Hamiltonian system; Periodic solution; SCHRODINGER-EQUATION; CRITICAL-POINTS; MINIMAL PERIOD; LOCAL LINKING; EXISTENCE; FUNCTIONALS; INDEFINITE; THEOREMS; ZERO;
D O I
10.1016/j.jmaa.2011.02.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the superquadratic second order Hamiltonian system u ''(t) + A(t)u(t) + del H (t, u(t)) = 0, t is an element of R. Our main results here allow the classical Ambrosetti-Rabinowitz superlinear condition to be replaced by a general superquadratic condition, and 0 lies in a gap of sigma (B), where B := - d(2)/dt(2) - A(t). We will study the ground state periodic solutions for this problem. The main idea here lies in an application of a variant generalized weak linking theorem for strongly indefinite problem developed by Schechter and Zou. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:842 / 851
页数:10
相关论文
共 31 条
[1]   Existence of periodic solutions of Hamiltonian systems with potential indefinite in sign [J].
Antonacci, F .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 29 (12) :1353-1364
[2]  
Barletta G, 2007, J NONLINEAR CONVEX A, V8, P373
[3]  
BARTSCH T, 1994, J REINE ANGEW MATH, V451, P149
[4]  
BENCI V, 1980, COMMUN PUR APPL MATH, V33, P147, DOI 10.1002/cpa.3160330204
[5]   Periodic solutions of Hamiltonian systems [J].
Ding, YH ;
Lee, C .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 32 (03) :555-571
[6]  
FEI G, 2002, J DIFFER EQUATIONS, P1
[7]  
Gasinski L., 2005, Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems
[8]   SOME RESULTS ON SOLUTIONS OF MINIMAL PERIOD TO SUPERQUADRATIC HAMILTONIAN-SYSTEMS [J].
GIRARDI, M ;
MATZEU, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (05) :475-482
[9]   SOLUTIONS OF MINIMAL PERIOD FOR A CLASS OF NONCONVEX HAMILTONIAN-SYSTEMS AND APPLICATIONS TO THE FIXED ENERGY PROBLEM [J].
GIRARDI, M ;
MATZEU, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (04) :371-382
[10]  
Guo ZM, 2003, SCI CHINA SER A, V46, P506