Maximal independent sets in minimum colorings

被引:8
作者
Arumugam, S. [1 ]
Haynes, Teresa W. [2 ]
Henning, Michael A. [3 ]
Nigussie, Yared [2 ]
机构
[1] Kalasalingam Univ, N CARDMATH, CGRF, Anand Nagar 626190, Krishnankoil, India
[2] E Tennessee State Univ, Dept Math, Johnson City, TN 37614 USA
[3] Univ Johannesburg, Dept Math, ZA-2006 Auckland Pk, South Africa
关键词
Coloring; Chromatic number; Domination number; Maximal independent set; Dominating-chi-color number; Dom-color number;
D O I
10.1016/j.disc.2010.06.045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Every graph G contains a minimum vertex-coloring with the property that at least one color class of the coloring is a maximal independent set (equivalently, a dominating set) in G. Among all such minimum vertex-colorings of the vertices of G, a coloring with the maximum number of color classes that are dominating sets in G is called a dominating-chi-coloring of G. The number of color classes that are dominating sets in a dominating-chi-coloring of G is defined to be the dominating-chi-color number of G. In this paper, we continue to investigate the dominating-chi-color number of a graph first defined and studied in [1]. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1158 / 1163
页数:6
相关论文
共 6 条
[1]  
ARUMUGAM S, 2008, RAMANUJAN MATH SOC L, V7, P195
[2]  
Chartrand G, 2009, CRC DISCR MATH APPL, P1
[3]  
Haynes T.W., 1998, Chapman & Hall/CRC Pure and Applied Mathematics
[4]  
Haynes TW, 1998, Fundamentals of domination in graphs, V1st, DOI [DOI 10.1201/9781482246582, 10.1201/9781482246582]
[5]  
Heggernes P., 1998, Nordic Journal of Computing, V5, P128
[6]  
WALIKAR HB, 2004, P NAT C GRAPHS COMB