Heat Transfer in a Rotating, Blade-Shaped, Two-Pass Cooling Channel With a Variable Aspect Ratio

被引:18
作者
Chen, I-Lun [1 ]
Sahin, Izzet [1 ]
Wright, Lesley M. [1 ]
Han, Je-Chin [1 ]
Krewinkel, Robert [2 ]
机构
[1] Texas A&M Univ, Dept Mech Engn, Turbine Heat Transfer Lab, College Stn, TX 77843 USA
[2] MAN Energy Solut SE, Steinbrinkstr 1, D-46145 Oberhausen, Germany
来源
JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME | 2022年 / 144卷 / 02期
关键词
turbine cooling; rotating heat transfer; blade-shaped cooling channel; fluid dynamics and heat transfer phenomena in compressor and turbine components of gas turbine engines; 180 DEG TURNS; RECTANGULAR CHANNELS; PRESSURE LOSS; SMOOTH; PERFORMANCE; FRICTION; PASSAGE;
D O I
10.1115/1.4052317
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This study features a rotating, blade-shaped, two-pass cooling channel with a variable aspect ratio (AR). Internal cooling passages of modern gas turbine blades closely follow the shape and contour of the airfoils. Therefore, the cross section and the orientation with respect to rotation varies for each cooling channel. The effect of passage orientation on the heat transfer and pressure loss is investigated by comparing to a planar channel design with a similar geometry. Following the blade cross section, the first pass of the serpentine channel is angled at 50 deg from the direction of rotation while the second pass has an orientation angle of 105 deg. The coolant flows radially outward in the first passage with an AR = 4:1. After a 180-deg tip turn, the coolant travels radially inward into the second passage with AR = 2:1. The copper plate method is applied to obtain the regionally averaged heat transfer coefficients on all the interior walls of the cooling channel. In addition to the smooth surface case, 45 deg angled ribs with a profiled cross section are also placed on the leading and trailing surfaces in both the passages. The ribs are placed such that P/e = 10 and e/H = 0.16. The Reynolds number varies from 10,000 to 45,000 in the first passage and 16,000 to 73,000 in the second passage. The rotational speed ranges from 0 to 400 rpm, which corresponds to maximum rotation numbers of 0.38 and 0.15 in the first and second passes, respectively. The blade-shaped feature affects the heat transfer and pressure loss in the cooling channels. In the second passage, the heat transfer on the outer wall and trailing surface is higher than the inner wall and leading surface due to flow impingement and the swirling motion induced by the blade-shaped tip turn. The rotational effect on the heat transfer and pressure loss is lower in the blade-shaped design than the planar design due to the feature of angled rotation. The tip wall heat transfer is significantly enhanced by rotation in this study. The overall heat transfer and pressure loss in this study is higher than the planar geometry due to the blade-shaped feature. The heat transfer and pressure loss characteristics from this study provide important information for the gas turbine blade internal cooling designs.
引用
收藏
页数:13
相关论文
共 33 条
[1]   1998 Heat Transfer Committee Best Paper Award - Complementary velocity and heat transfer measurements in a rotating cooling passage with smooth walls [J].
Bons, JP ;
Kerrebrock, JL .
JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 1999, 121 (04) :651-662
[2]   LDA investigation of the flow development through rotating U-ducts [J].
Cheah, SC ;
Iacovides, H ;
Jackson, DC ;
Ji, H ;
Launder, BE .
JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 1996, 118 (03) :590-596
[3]   Heat Transfer in a Rotating Two-Pass Rectangular Channel Featuring a Converging Tip Turn With Various 45 deg Rib Coverage Designs [J].
Chen, Andrew F. ;
Shiau, Chao-Cheng ;
Han, Je-Chin ;
Krewinkel, Robert .
JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2019, 11 (06)
[4]   Heat Transfer in a Rotating, Two-Pass, Variable Aspect Ratio Cooling Channel With Profiled V-Shaped Ribs [J].
Chen, I-Lun ;
Sahin, Izzet ;
Wright, Lesley M. ;
Han, Je-Chin ;
Krewinkel, Robert .
JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2021, 143 (08)
[5]   Experimental and Numerical Analysis of Gas Turbine Blades With Different Internal Cooling Geometries [J].
Eifel, M. ;
Caspary, V. ;
Hoenen, H. ;
Jeschke, P. .
JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2011, 133 (01)
[6]  
Ekkad S.V, 2011, ASME paper No. GT2011-45254
[7]   Heat transfer in two-pass rotating rectangular channels (AR=1:2 and AR=1:4) with 45 deg angled rib turbulators [J].
Fu, WL ;
Wright, LM ;
Han, JC .
JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2005, 127 (01) :164-174
[8]  
Han J.-C., 1986, MEASUREMENT HEAT TRA
[9]   DEVELOPING HEAT-TRANSFER IN RECTANGULAR CHANNELS WITH RIB TURBULATORS [J].
HAN, JC ;
PARK, JS .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1988, 31 (01) :183-195
[10]   HEAT-TRANSFER AND FRICTION CHARACTERISTICS IN RECTANGULAR CHANNELS WITH RIB TURBULATORS [J].
HAN, JC .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1988, 110 (02) :321-328