Wavelets and statistical analysis of functional magnetic resonance images of the human brain

被引:95
作者
Bullmore, ET
Fadili, J
Breakspear, M
Salvador, R
Suckling, J
Brammer, M
机构
[1] Kings Coll London, Inst Psychiat, Dept Biostat & Comp, London SE5 8AF, England
[2] Univ Cambridge, Addenbrookes Hosp, Brain Mapping Unit, Cambridge CB2 2QQ, England
[3] Univ Cambridge, Addenbrookes Hosp, Wolfson Brain Imaging Ctr, Cambridge CB2 2QQ, England
[4] GREYC CNRS, UMR 6072, Caen, France
[5] Univ Sydney, Westmead Hosp, Brain Dynam Ctr, Sydney, NSW 2006, Australia
[6] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
关键词
D O I
10.1191/0962280203sm339ra
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Wavelets provide an orthonormal basis for multiresolution analysis and decorrelation or 'whitening' of nonstationary time series and spatial processes. Wavelets are particularly well suited to analysis of biological signals and images, such as human brain imaging data, which often have fractal or scale-invariant properties. We briefly define some key properties of the discrete wavelet transform (DWT) and review its applications to statistical analysis of functional magnetic resonance imaging (fMRI) data. We focus on time series resampling by 'wavestrapping' of wavelet coefficients, methods for efficient linear model estimation in the wavelet domain, and wavelet-based methods for multiple hypothesis testing, all of which are somewhat simplified by the decorrelating property of the DWT.
引用
收藏
页码:375 / 399
页数:25
相关论文
共 98 条
  • [1] Adaptive thresholding of wavelet coefficients
    Abramovich, F
    Benjamini, Y
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1996, 22 (04) : 351 - 361
  • [2] Abramovich F., 1995, LECT NOTES STAT, P5
  • [3] ABRAMOVICH F, 1996, BAYESIAN INFERENCE W, P33
  • [4] Multiscale nature of network traffic
    Abry, P
    Baraniuk, R
    Flandrin, P
    Riedi, R
    Veitch, D
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2002, 19 (03) : 28 - 46
  • [5] ABUREZQ AN, 1999, COMPUTINTG BIOMEDICA, V12, P173
  • [6] Aldroubi A., 1996, WAVELETS BIOL MED
  • [7] Wavelet domain de-noising of time-courses in MR image sequences
    Alexander, ME
    Baumgartner, R
    Windischberger, C
    Moser, E
    Somorjai, RL
    [J]. MAGNETIC RESONANCE IMAGING, 2000, 18 (09) : 1129 - 1134
  • [8] MR IMAGE COMPRESSION USING A WAVELET TRANSFORM CODING ALGORITHM
    ANGELIDIS, PA
    [J]. MAGNETIC RESONANCE IMAGING, 1994, 12 (07) : 1111 - 1120
  • [9] [Anonymous], 1996, Wavelets in Medicine and Biology
  • [10] Measuring time-frequency information content using the Renyi entropies
    Baraniuk, RG
    Flandrin, P
    Janssen, AJEM
    Michel, OJJ
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (04) : 1391 - 1409