Efficient and reliable a posteriori error estimators for elliptic obstacle problems

被引:101
作者
Veeser, A [1 ]
机构
[1] Univ Freiburg, Inst Angew Math, D-79104 Freiburg, Germany
关键词
adaptive finite element methods; a posteriori error estimates; residual-type estimators; numerical integration; elliptic variational inequalities; obstacle problems;
D O I
10.1137/S0036142900370812
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A posteriori error estimators are derived for linear finite element approximations to elliptic obstacle problems. These estimators yield global upper and local lower bounds for the discretization error. Here discretization error means the sum of two contributions: the distance between continuous and discrete solution in the energy-norm and some quantity that is related to the distance of continuous and discrete contact set. Moreover, the local error indicators in the interior of the discrete contact set reduce to quantities that measure only data resolution.
引用
收藏
页码:146 / 167
页数:22
相关论文
共 32 条
[1]   A UNIFIED APPROACH TO A POSTERIORI ERROR ESTIMATION USING ELEMENT RESIDUAL METHODS [J].
AINSWORTH, M ;
ODEN, JT .
NUMERISCHE MATHEMATIK, 1993, 65 (01) :23-50
[2]  
[Anonymous], 1982, PURE APPL MATH
[3]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[4]   A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
RHEINBOLDT, WC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) :1597-1615
[5]  
Bellettini G., 1991, Math. Appl., V2, P297
[6]  
BELLETTINI M, 1990, CALCOLO, V27, P251
[7]  
BLOWEY JF, 1994, MOTION BY MEAN CURVATURE AND RELATED TOPICS, P1
[8]  
CHEN Z, UNPUB ADAPTIVE FINIT
[9]  
Chen ZM, 2000, NUMER MATH, V84, P527, DOI 10.1007/s002119900123
[10]  
Chipot M., 1984, Appl. Math. Sci., V52